
Using the BASIC 5.0/5.1 System
HP 9000 Series 200/300 Computers

HP Part Number 98613-90000

FliOW HEWLETT
.:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY Of ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HewIett-Packa'd shall not be liable

fOf errors contained herein Of direct. indirect. special. incidental or consequential damages In comectIon with the fu'nishing. performance.
Of use of this material.

WARRANTY
A copy of the specific warranty terms applicable to 'fOOl HewIett-Packard product and replacement parts can be obtained from your lOcal
Sales and Service Office.

Copyright © Hewlett-Packard Company 1987

This document contains information which is protected by copyright. AI rights are reserwd. Reproduction. adaptation. or translation without
prior written premission is prohibited. except as allowed under the copyright laws.

Restricted Rights Legend

Use. duplication Of disclosure by the U.S. GoYerm1ent Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(i) of the

Rights in Technical Data and Software clause in FAR 52.227-7013.

Use of this manual and flexible disc(s) Of tape cartrldge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made fOf security and back-up purposes only. Resale of the programs In their presant form or with alterations. is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979. 1980. 1983

This software and documentation is based in part on the Fourth Ber1<eIey Software Distribution under license from the Regents of the University

of California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manuai by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

November 1987 ... Edition 1

Printing History iii

iv Printing History

Table of Contents
Introduction to Using the BASIC System

Chapter 1: Loading BASIC into Memory
Turn on Computer. .. 1-2
Is BASIC Loaded and Ready for Use? .. 1-4

What to Do Next? .. 1-5
Order of Devices Searched by the Boot ROM 1-6

Chapter 2: Introduction to the System
Notations in this Manual. .. 2-1

U sing the Key board .. 2-3
What Can You Do at the Keyboard? .. 2-4
Performing Calculations at the Keyboard .. 2-4
Typing and Executing Commands. .. 2-5

Using Typing-Aid Softkeys ... 2-6
Softkey Labels. .. 2-7

What State Is the System In? ... 2-10
Is a Program Running? .. 2-10
Is There a BASIC Program in Memory?' 2-13
Clearing the Program .. 2-14
Determining Current System Devices and Binaries 2-15

Re-Defining Typing-Aid Softkeys 2-17
Examples of Re-Defining Typing-Aid Soft keys 2-17
Softkey Labels .. 2-19
Memory Available for Typing-Aid Definitions 2-20
Listing the Current Typing-Aid Definitions 2-21
File for Typing-Aid Softkeys. .. 2-21
Restoring Power-Up Typing-Aid Definitions. .. 2-22
Defining Typing-Aid Softkeys Programmatically 2-22

Clearing the Computer. .. 2-23
What to Do Next .. 2-24

Chapter 3: Mass Storage Concepts
Overview of Mass Storage Organization (or "What Are Files and Volumes?"). 3-1

A File Is Named Collection of Data 3-2
Volumes Are Collections of Files 3-3
Examples of Mass Storage Volumes 3-3

Table of Contents v

How to Specify Volumes ... 3-5
Checking a Disc's Format .. 3-9
Hierarchical Directories. .. 3-10

What Is a Hierarchy? .. 3-10
Uses of the Hierarchy: An Example 3-11
Referring to Directories and Files in the Hierarchy 3-12

Choosing a Directory Format .. 3-13
Criteria for Choosing a Directory Format 3-14

What Is Initialization? .. 3-16
Disc Sectors. .. 3-18

Sector/Volume Size Option .. 3-18
Disc Interleave ... 3-19
What to Do Next .. 3-20

Chapter 4: Loading and Running Programs
A Brief Look at Loading and Running Programs 4-1
A Closer Look at Loading Programs. .. 4-4

Using LOAD ... 4-4
Using GET ... 4-5

A Closer Look at Running Programs .. 4-7
Prerun .. 4-7
Normal Program Execution .. 4-8
Live Keyboard. .. 4-9
Example of Controlling Program Execution 4-9

What to Do Next .. 4-14

Chapter 5: Using Directories and Files
Finding and Specifying Files ... 5-1

Is the File on the Default Volume? 5-1
Directory, File, and Volume Specifiers 5-3
Changing the Default Volume and Current Working Directory 5-6

Creating and Using Hierarchical Directories .. 5-7
Example Hierarchy. .. 5-7
Changing the Default Volume 5-7
Adding Another Directory ... 5-8
A Closer Look at Hierarchical Directory Capabilities 5-11
How SRM and HFS Directories and Files Are Stored 5-12

A Closer Look at File Catalogs .. 5-13
General File Management Operations 5-21

Closed vs. Open Files and Hierarchical Directories. 5-21
Protecting Files. .. 5-21
Copying Files and Volumes. .. 5-32

vi Tahlf' of Contf'nts

Renaming Files .. 5-34
Purging Files .. 5-35
Volume Labels (LIF and HFS Volumes Only) .. 5-39
Enabling Checkread Verification 5-40

What to Do Next .. 5-41

Chapter 6: Editing and Storing Programs
Entering and Storing Programs (Overview) .. 6-1

Terminology. .. 6-1
Getting into EDIT Mode .. 6-3
Correcting Typing Mistakes .. 6-4
Storing the Line .. 6-4
Entering Program Lines ... 6-4
Upper-case or Lower-case Letters? 6-6
Keys Used for Editing the Current Line 6-7
Keys Used for Scrolling the Program .. 6-9
Inserting Lines .. 6-10
Deleting and Recalling Lines 6-11
Copying Lines (By Changing Line Numbers) 6-12
Getting Out of EDIT Mode 6-12
Listing the Program .. 6-13
Storing the Program ... 6-13
Running the Program .. 6-13

A Closer Look at Editing ... 6-14
More Details about Getting into EDIT Mode. .. 6-14
Typing-Aid Softkey Menu Changes (ITF Keyboards Only) 6-15
A Closer Look at Listing a Program 6-16
Global Editing Operations .. 6-18
Indenting a Program ... 6-19
Finding Textual Patterns ... 6-22
Search-and-Replace Operations. .. 6-24
Copying Program Segments .. 6-25
Moving Program Segments .. 6-25
Deleting Multiple Lines ... 6-26

Making Programs Readable 6-27
Contrast Between Documented and Undocumented Programs 6-28
General Recommendations for Commenting Programs 6-30

Software Security .. 6-31
Preventing Programs from Being Listed. .. 6-31
Other Security Measures. .. 6-32

Table of Contents vii

A Closer Look at Storing Programs 6-33
Using STORE ... 6-34
U sing SAVE. .. 6-34

What to Do Next. .. 6-36

Chapter 7: ITF Keyboards
BASIC ITF Keyboard Overlays 7-2
Character Entry Keys. .. 7-2
Cursor-Control Keys .. 7-5
Numeric Keypad. .. 7-6
Editing Keys ... 7-7
Program Control Keys. .. 7-9
System Control Keys .. 7 -10
Softkeys and Softkey Control .. 7 -12

Chapter 8: HP 98203B/C Keyboards
Character Entry Keys ... 8-2
Numeric Keypad. .. 8-4
Cursor-Control Keys .. 8-5
Edi ting Keys .. 8-6
System Control Keys .. 8-9
Softkeys .. 8-11
Program Control Keys. .. 8-12

Chapter 9: HP 98203A Keyboards
Charader Entry Keys .. 9-2
Cursor-Control Keys .. 9-4
Editing Keys .. 9-5
System Control Keys .. 9-8
Soft keys .. 9-10

Index

viii Table of Contents

Introduction to Using the BASIC System
This manual contains information about using the BASIC system that you may use
frequently. If you need information about installing BASIC onto a hard disc, configuring
or customizing your system, maintaining BASIC (making back-ups, etc.), you should
reference the Installing and Maintaining the BASIC System.

Here is what you will find in this manual:

Chapter

"Loading BASIC into Memory"

"Introduction to the System"

"Mass Storage Concepts"

"Loading and Running Programs"

"U sing Files and Directories"

"Editing and Storing Programs"

"Keyboard" chapters

Description

a chapter that describes loading an installed BASIC
system

a chapter that shows you the keyboard operations
used in BASIC, and how to read the display during
a BASIC session

a chapter that describes detailed concepts related to
mass storage (storing files, etc., on discs)

shows you how to load programs from a disc, and run
them

a chapter that explains how you specify files in BA­
SIC, and how to use an HFS (Hierarchical File Sys­
tern) directory structure

when you need to write programs, go to this chapter
for information on the BASIC editor

for detailed information about common keyboards
and their use with BASIC.

Tasks/Topics

If you have not installed BASIC ...

Load BASIC from back-up discs or from hard disc ...
TT - ,.

If loading fails ...

What to do next, ..

Order of devices searched by the Boot ROM ...

Where to Go
For Details

Installing and Maintaining
the BASIC System

1-1

1-5

1-,5

1-6

Loading BASIC into Memory 1
This chapter is not for installing BASIC. You should have already installed BASIC in
Installing and Maintaining the BASIC System. If you have not done so, go to that
manuai now.

If your System Administrator (the person who installed your system and possibly
configured it) has an alternate loading procedure, use that procedure instead of the
following default! loading procedure.

A detailed description of how to choose a system to load is included in this chapter. If
you need more information, see the appropriate section in Installing and Maintaining the
BASIC System (the one you used when installing).

Table 1-1. Loading BASIC

If You Have
This Configuration ...

Only flexible disc drives

One or more hard disc drives
(and you do not have an HP-UX
system currently running)

One or more hard disc drives and
an HP-UX system is cur­
rently running

Do These Steps ...

1. Make sure computer and
disc drives are turned off

2. Turn on one flexible disc drive
3. Insert back-up copy of System DISC ONE
4. Turn on computer (be sure monitor is on)

1. Make sure computer is turned off
2. Hold down spacebar and turn computer on
3. Choose a system (for example, SYSTEM_BA5)

by typing characters to left of the
system entry on the screen; e.g., lB

1. Do not turn off the computer or disc:
See the System Administrator who
will shutdown the system.

2. Only after the system has been shutdown,
reboot the system (reboot) and hold
down the spacebar

3. Choose a system (such as SYSTEM_BA5)
by typing characters to left of
the system entry (e.g., lB)

See
Page ...

1-5

1-2

1-2

1 A default procedure is one that is standard or assumed by the system if not changed by a user.

Loading BASIC into Memory 1-1

Turn on Computer
(and Hold Down Spacebar if You Have Other Systems On-Line)

If there are no other on-line systems, you need not hold down the space bar (the boot
ROM searches for your system and loads the default system automatically).

After pressing the computer's power switch on (or rebooting), press the space bar on the
keyboard and hold it down.

Figure 1-1. Turn Computer On and Hold Down the Space Bar

Holding down thE' sparE' bar doE's two things:

• Tells the computer to wait until you are ready to load a system (instead of
automatically loading the first one it finds) .

• Allows you to watch the computer's display as it:

• performs its self-test (checks mf'lllory, ptr.)

• searches for interfaces (such as HP-IB, RS-232C. etc.),
and on-line systems (operating systems stored on discs, tapes, and ROM
cards). For a list of the order in which the devices are search, see the last
section in this chapter, "Order of Devices Searched by the Boot ROM."

1-2 Loading BASIC into Memory

If You See Nothing on the Monitor Screen
Here are some possible explanations if there is nothing on the monitor screen:

• The monitor's brightness is not turned all the way up.

• The monitor is not plugged in.

• The computer is not plugged in.

If You Still Have Problems
If you have verified that the above problems do not exist, but you are still not getting a
display, see your computer's Installation Reference for troubleshooting advice.

Choosing a System
Type the number and letter to the left of the "SYSTEM_BA5" entry. For example in the
figure below, you would type OJ 00; the lower right shows the characters you type.

Volume Specifier

;HP9153. 702. 0 t 0'
Pascal ---.-lP SYSTEM_P32

Copyright 1985.
Hewlett-Packard Company.
All Rights Reserved. :HP9153 REMV. 702. 1. 0

BASIC ~@ SYSTEM_BA5

High Resolution CRT ~ Display Type
MC68010 Processor ~ CPU Type
Keyboard I(Keyboard Type

::-~:620B I
HP 98626 at 9 ~nterface~ currently
HP 98625 at 14 Installed In computer

HP 98629 at 21
1048402 Bytes I(Memory before booting

Figure 1-2. Choosing a System

lB

Loading BASIC into Memory 1-3

The lower-left corner of the display will show the following message to indicate that it is
loading the specified system:

BOOTING A SYSTEM
RESET To Power-up

See the end of this chapter for "Order of Devices Searched by the Boot ROM". If you
loaded BASIC from a hard disc, you have finished. See "What to Do Next."

Is BASIC Loaded and Ready for Use?
If you are loaning BASIC from a back-up copy of the System flexible discs, you will
switch discs until the AUTOST program displays this message:

The BASIC system is now ready for use.

BASIC has been successfully loaded. You are ready to use BASIC; see "What to do
Next" for more information.

If you are booting a STOREd SYSTEM from a hard disc or SRM, you will see the
message:

BASIC Main 5.1

To verify you have all the binaries loaded, run:

LIST BIN I Return I

If you loaded from a customized AUTOST program, see your System Administrator for
details.

1-4 Loading BASIC into 11emory

If Loading Fails
If the computer did not load the BASIC system, then you should check for the following
potential problems.

Problem Solution

The Boot ROM does not Make sure that the disc drive is plugged in and turned on.
find the BASIC system

Make sure that the drive is connected to the HP-IB interface
of the computer.

Make sure the back-up System disc is properly inserted in
the drive.

NOT ENOUGH MEMORY Your computer does not have sufficient memory, Qr mem-
is displayed ory board(s) have been improperly installed. Refer to the

Peripheral Installation Guide for instructions on how to con-
figure and install memory cards.

What to Do Next?
N ow that BASIC is loaded, you may begin using BASIC. The following table shows some
chapters for more information on BASIC.

Topic Chapter.

Learn about some BASIC fundamentals "Introduction to the System"

Learn about mass storage devices "Mass Storage Concepts"

How to run BASIC programs "Loading and Running Programs"

How to manage files "Using Files and Directories"

How to edit programs "Editing and Storing Programs"

Loading BASIC into Memory 1-5

Order of Devices Searched by the Boot ROM
The following table lists the order in which the Boot ROM searches mass storage devices
for system files.

Type of Mass
Priority Storage Device Comments

1 Internal disc drive Select code 4; unit number 0 (right drive)
(9826 and 9836 only)

2 External disc drives Select codes 7 through 31; primary address 0;
unit number 0; volume number 0

3 Shared Resource Manager Select code 21; node number 0;
(SRM) volume number 8; /SYSTEMS directory

4 Bubble memory card Select code 30 (Bubble memory is organized as files and
(HP 98259) treated the same as other mass storage devices.)

5 EPROM card Unit 0 (EPROM is also organized and treated like other
(HP 98255) mass storage devices: if a system is found in EPROM,

then it is first transferred to computer memory and
executed from there-the CPU does not execute the
system directly from EPROM)

6 ROM-based operating sys- Execute directly from ROM and do not have to be
terns loaded into computer memory

7 Internal disc drive Select code 4; unit number 1 (left drive)
(HP QR?R ~nn HP QR~R ,--- ---- ---- --- ----
only)

8 Remaining external disc Select codes 7 through 31; addresses 0 through 7;
drives unit numbers 0 through 7; volume numbers 0 through 7

9 Remaining SRM systems Select codes 8 through 31

10 Remaining bubble memory Select codes 0 through 31. except 30
cards

11 Remaining EPROM units Units 1 through last one found

1-6 Loading BASIC into ~lemory

Where to Go
Tasks /Topics For Details

Notations in this Manual 2-1

Using the Keyboard 2-3

What Can You Do at the Keyboard? 2-4

Performing Calculations at the Keyboard 2-4

Typing and Executing Commands 2-5

Using Typing-Aid Softkeys 2-6

Softkey Labels 2-7

What State is the System in? 2-10

Is a Program Running? 2-10

Is There a BASIC Program in Memory? 2-13

Clearing the Program 2-14

Determining Current System Devices and Binaries 2-14

Re-Defining Typing-Aid Softkeys 2-17

Softkey Labels 2-19

Memory Available' for Typing-Aid Definitions 2-20

Listing the Current Typing-Aid Definitions 2-21

File for Typing-Aid Softkeys 2-21

Restoring Power-Up Typing-Aid Definitions 2-22

Defining Typing-Aid Soft keys Programmatically 2-22

Clearing the Computer 2-23

What to Do Next 2-24

Introduction to the System 2
This chapter introduces you to using the keyboard and display of HP Series 200/300
computers. Topics include how to type in and execute commands, use typing-aid softkeys,
determine how much memory is available, and determine which device is the system
printer.

Notations in this Manual
The following table describes some of the notations (conventions) used in this manual.

If You See ...

COMPUTER FONT

italic font

Caps Lock On

Caps Lock Off

Caps

(blank)

It Means ...

this is either what you see as the system's response to your
commands, or this is exactly what you should type in an example

when you see examples with italics in them, you have to replace
the italic words with your own (i.e., if the italic word is file_name,
then you supply a real file name in place of file_ name)

if you see a word in a box, it refers to an actual key on your
keyboard; for example, look on your keyboard for I Break I (upper
left on the ITF keyboard)

when a key is prefaced with I Shift ~, it means you press the I Shift I
key, hold it down and press the next key (like shifting case)

if you see this in the System Message/Results line, it means you
will type upper-case letters

if you see this in the System Message/Results line, it means you
will type lower-case letters

(ITF keyboard only, at lower right of screen) means you will type
upper-case letters

(ITF keyboards only, at lower right of screen) means you will type
lower-case letters

Throughout this manual, the key cap I Return I will be used. IT you have a keyboard
other than the ITF keyboard (with a key like I Enter I instead of I Return I), substitute the
appropriate key.

Introduction to the System 2-1

The Significance of Letter-case
While typing commands, letter-case is usually not important. For instance, these two
commands are recognized as being equivalent by the system as the BEEP statement:

beep
BEEP

However, letter-case is significant when typing in things like literal text (enclosed in
"quotes"). Also, BASIC keywords can be all upper-case or all lower-case; however, when
letter-case is mixed in a keyword, the system interprets it as a variable name. For
instance, Beep would be interpreted as a variable name, not as a keyword. HE'rE' arE' some
examples that are not equivalent:

Table 2-1. Example Commands that Are NOT Equivalent

First Command Second Command Reason not Equivalent

LOAD "MyFile" LOAD "MYFILE" Literal string

systemS ("MSI") system$(" msi") Literal string

BEEP Beep Can't mix letter-case in keywords

2-2 Introduction to the System

Using the Keyboard
There are three different types of keyboards available with Series 200 and Series 300
computers. Here are the options, along with the names by which we will refer to them
throughout the BASIC manual set.

EJ~~D~~u~D~uD~D~~
~~~~~D~~u~DDD~~u 
[;J EJ[]uO[]~EJEJDEJ[JEJ El~LJ 
(;J ~[ [~ ~0~ 

Figure 2-1. ITF Keyboard (with BASIC Keyboard Overlay) 

:' :::. ~. c~ 

~E3c::=:J 

CUlSCtI SlI'" CUI .. SfOI' 

~~ 

Figure 2-2. HP 98203B/C Keyboards 

Figure 2-3. HP 98203A Keyboard 

Introduction to the System 2-3 



What Can You Do at the Keyboard? 
There are several things you can do at the keyboard of this system: 

• perform calculations 

• type in and execute commands 

• load and run programs, and control program execution 

• typP, in. ediL and store programs. 

Lf't's now look at how to I)('rform calculation~. and typf' in and f'XE'cutf' comrmmds. (Th(' 
last two of these operations are discussed in subsequent chapters.) 

Performing Calculations at the Keyboard 
BASIC has a command interpreter that can abo f'Valllatf' IlUIllerJC ('xprf'SSiOIlS, For 
example, you could type: 

99/9 I Return I ~ Characters you type appear here. 

l1 ...... If------System response appears here. 

Note that with HP 98203 keyboards, you will press the I ENTER I key instead of the I Return I 
key. 

You can use arithmetic operators such as 

+ for addition 
- for subtraction 
/ for division 
* for multiplication 

as v,;dl a:, parf'nt hf'sis. and f'xponf'ntiation (-), For a list of priority when f'valuating 
an arithmetic expression, see Programming Techniques, Volume 1: General Topics, 
('Numeric Computation," for a table listing the hierarchies. 

2-4 Introduction to the System 



Typing and Executing Commands 
You can type in and execute commands from the keyboard at all times except when: 

• there is currently a command being executed, with another one already entered 
and waiting to be executed 

• there is a program running that traps keystrokes (with ON KBD) or disables the 
keyboard (with SUSPEND INTERACTIVE). 

At all other times, you can type in commands and press I Return I to present them to the 
system for execution. The system parses the command and takes the appropriate action. 

Example Command (Determining Available Memory) 
Type in and execute the following command (characters will appear in the "Keyboard 
Input" line near the bottom of the display): 

SYSTEMS (II AVAILABLE MEMORY II) I Return I 

The system returns something like this in the "System Messages" line at the bottom of 
the display: 

123456 

This value represents the number of unused bytes of memory. 

Example Command (Checking and Setting the System Clock) 
The following functions allow you to check the setting of the system clock (the CLOCK 

binary must be already loaded): 

DATE$(TIMEDATE), TIME$(TIMEDATE) I Return I 

The system returns something like this: 

17 Mar 1987 10:27:32 

You can set the time and date with the SET TIMEDATE statement; here is an example: 

SET TIMEDATE DATE("17 Mar 1987")+TIME("10:30:00") I Return I 

If you are sharing a hard disc with an HP-UX system, you should also use the TIMEZONE 
IS statement for compatibility with time stamps on files. See the BASIC Language 
Reference, TIMEZONE statement, for details. 

Introduction to the System 2-5 



Using Typing-Aid Softkeys 
(Requires KBD Binary) 
There are "softkeys" on all three of the keyboards available on Series 200/300 computers. 
Here are the locations of these keys: 

Figure 2-4. Location of Softkeys on ITF Keyboard 

Figure 2-5. Location of Softkeys on 98203B/C Keyboard 

••••• IIII.III!!BIIIIIIII 
IIBRaRIIDOIIRagSII 

II a II 1111 II 1111 II II II Bill 
naaDlleaaa.BIIBlIll 
_aaIlBallll ••• _111 ----_ .. 

Figure 2-6. Location of Softkeys on 98203A Keyboard 

2-6 Introduction to the System 



Softkey Labels 
Before using any of the softkeys, be sure the one you choose to press is the one you really 
want. (On an ITF keyboard, you can press I Menu I to turn on the soft key labels.) To see 
the current definitions of the softkeys, execute the following command (KEY LABELS 
requires CRTX binary): 

KEY LABELS ON I Retum I 
or 

CONTROL CRT .12; 2 I Return I 

This command turns on the "Key Labels" area at the bottom of the display as shown 
below (this example is for a system with an ITF keyboard): 

~~"l! .".,Ii, ., 
•• 'Iat> re'D Claar 

The following diagram shows the format of the softkey labels when an HP 98203 keyboard 
is in use: 

•••• 
i<'ii:'.:.: :::: LQI)<IU· •• ~.~ 

Example Typing-Aid Softkey Definition 

<lid.'.... "Ulllt 
LI.'XI .~_~II 

Typing-aid softkeys produce a sequence of characters! on the keyboard input line (or 
on the "current line" in EDIT mode). For instance, pressing [IT] (on an ITF keyboard) 
produces these characters: 

EDIT 

You can also re-define these keys, so each produces a special set of characters specific to 
your needs. See the "Re-Defining the Typing-Aid Softkeys" for details. 

1 Typing-aid softkeys are only active when a running program has not defined them to produce an 
interrupt. See "Program Structure and Flow", Programming Techniques for ON KEY details. 

Introduction to the System 2-7 



Softkey-Menu Indicator (ITF Keyboard Only) 
On computers with ITF keyboards, the softkeys ([ill through [][]) have four independent 
sets of definitions. You can select which set of defini tions (and labels) to activate by using 
the I System I, I User I (I Shift H System I), and I Shift H Menu I keys. You can turn the labels on and 
off with the I Menu I key. 

With each set of definitions, there is a menu with current definitions. 

The System softkey menu (press I System I) shows definitions for "immediate-execute" 
system operations such as Step, RUN, and Recall. When this menu is active, the keys 
[ill through [][] have the definitions shown below: 

Print 
&1.1 

System Caps Idle 

Clr Tab Display Any 
anT. 'eta. Char 

The System menu is the default menu at system power-up, after a SCRATCH A, etc. 
( when the KBD binary is not present). 

The User 1 softkey menu (press I User I) shows typing-aid definitions for the User 1 softkeys. 
These keys will produce specific sequences of characters when pressed. For instance, 
pressing [ill will produce the characters EDIT while in this menu. 

User 1 Caps Idle 

Continue BUN SCI\lTCH LOAD" LOAD BXI LXRBIN g ... srou Ii. •• 

The User 1 menu is the default menu when the KBD binary is loaded. If you are in the 
System menu and press I User I, you will be returned to the User menu (but not necessarily 
User 1). If you are in one of the User menus and press I User I, you return to the User 1 
menu. 

2-8 Introduction to the System 



The User 2 softkey menu (press I Shift H Menu I) has the following default definitions: 

liB .IIBI RIDJ···.····.····./··· .. ·.··· :=-
User 2 Caps 

OOPYLZB 'm···· S,·. 
I. dIe J 

CJWJ8* IDDT 

Softkeys [E] through [@J are only defined if the PDEV and EDIT binaries are loaded at 
the time that the default definitions of these keys are set up (when SCRATCH A, LOAD 
KEY, or LOAD BIN "KBD" are executed). 

The User 3 softkey menu (press I Shift H Menu I from User 2 menu) has the following default 
definitions: 

User 3 Caps Idle 

III" •• 
Pressing I Shift H Menu I cycles you through the User menus (from 1 to 2 to 3 to 1, and so 
on). 

Introduction to the System 2-9 



What State Is the System In? 
When BASIC is booted, memory is cleared and various system elements are assigned 
default values. For example, the CRT display is assigned as the system printer. This 
condition is called the "power-on state" 1 . 

If your computer has been used since power-on, it may be in a somewhat unknown state. 
For instance, there may be an unwanted program in memory, or the default printer or 
volume may have been changed to specify devices that you don't want. This section 
explains: 

• how to find out what your computer is doing, and what state it is in 

• how to get it into a state in which you can begin to use it properly. 

Is a Program Running? 
If there are several people sharing a computer, you should generally find out whether 
the computer is currently in use so you will not destroy someone else's work. It is also 
convenient to be able to quickly glance at the display to find out whether your own 
program is running, waiting for input, or for a device to become available, and so forth. 

Program-Status Indicators 
You can determine the current status of the system by looking at the lower right-hand 
corner of the CRT. BASIC uses this area to display information about whether a program 
is currently running, what soft key menu is currently active, and so forth. 

1 For a complete list of power-on defaults, see the "Useful Tables" appendix of the BASIC Language 
Reference. 

2-10 Introduction to the System 



l 
System 

Softkey-Menu Indicator: 
(ITF Keyboards Only) 

System } 
User 1, 

User 2, or 
User 3 

Select menu 
with I System I 
or I Shift H Menu I key 

_--- Caps-Lock Indicator} Toggle Mode with 1 (ITF Keyboards Only) I Caps I key 

Program-Status Indicator 
Caps Running --- (ITF Keyboards Only) 

---Run Light 

'--__ L--__ .....&.. ___ Softkey Labels KEY LABELS ON & 
} 

Tum on and off with 

OFF or I Menu I key 

The character in the lower right corner is referred to as the "run light". The Table 2-2 
shows the various indications of the run light and their meaning. 

Table 2-2. Run Light Indications 

Status 
Indicator! Run Light System State 

Idle (blank) Program stopped; can execute commands; 
CONTINUE not allowed. 

Running Program running; can execute commands. 
CONTINUE not allowed. 

Paused - Program paused; can execute commands; 
CONTINUE is allowed. 

Transfer 10 Program paused, but an overlapped TRANS-
FER (I/O) operation is still in progress; can 
also execute commands. 

Input? ? BASIC program waiting for input from key-
board; cannot execute commands. 

Command * System executing command entered from key-
board; can enter 1 more command, but it will 
not be executed until after the current com-
mand is completed. 

1 These indicators are displayed only if softkey labels are currently on. Use the KEY LABELS ON 
statement (or the I Menu I key on an ITF keyboard) to turn these labels on. 

Introduction to the System 2-11 



Pausing, Stopping and Continuing Programs 
If the computer operator does not intervene, a program will run until it rcach<:'s an END. 
STOP, or PAUSE statement, or until it pauses to input data or report an error. If you 
wish to pause or stop a program before its normal completion, continue operation, or 
abort an I/O statement, use the following keys: 

Table 2-3. Pausing and Stopping Programs 

98203B/C ITF 98203A 
Keyboard Keyboard Keyboard Effect 

I PAUSE I ~ I PSE I Pauses program execution after the computer 
(Pause) finishes the line it is on and any I/O operations 

in progress. This is useful for pausing a program 
that is executing an INPUT statement. It leaves 
all necessary internal information intact, so that 
program execution can be resumed again with 
the index INPUT statement the I CONTINUE I key 
(see below) or CONT command. 

I CONTINUE I [][] I CONi] Pressing I CONTINUE I after a PAUSE (key or 
(Continue) statement) causes program execution to resume 

in a normal manner from the place where it was 
paused. 

I CLR 1/0 I I Break I @JZQJ Aborts any I/O statement in progress (such as 
ENTER or TRANSFER) and pauses the pro-
gram. The program counter is returned to the 
beginning of the ahorted I/O statement, so that 
the I CONTINUE I key or the CONT command 
cause the program to resume program execution 
beginning with that same statement. This is use-
ful when the computer is "hung" trying to out-
put to a device that is down. 

2-12 Introduction to the System 



Table 2-3. (Continued) 

98203B/C ITF 98203A 
Keyboard Keyboard Keyboard Effect 

1 STOP I ~ 1 STOP I Stops the program after the computer finishes 
(I SHIFT ~ (I Shift ~ (I SHIFT ~ executing the line it is on (and returns the pro-
I CLR I/O I) ~) ~) gram to the main context, if executing a sub-

program or user-defined function). However, it 
does not affect the interfaces, the CRT, program 
memory, the values of variables, tabs, or the 
1 RECALL I key's buffer. I CONTINUE I is not allowed 
after a I STOP I. 

I RESET 1 I Reset 1 I RST 1 This is the most drastic and complete way to halt 
(I SHIFT ~ (I Shift ~ (I SHIFT ~ program execution. The program stops immedi-
I PAUSE D I Break]) IpSE D ately, all I/O operations are aborted, any open 

files are closed, and all interface cards are reset. 
However, the printout area of the CRT, program 
or variable memory, tabs, and the I RECALL 1 key's 
buffer are not affected. I CONTINUE 1 is not al-
lowed after a I RESET I. 

The easiest way to remember the key definitions on the ITF keyboard is to use the 
keyboard overlay and keep the soft key labels on. (To turn softkey labels on, either press 
the I Menu 1 key or execute the KEY LABELS ON statement.) 

Is There a BASIC Program in Memory? 
If a BASIC program is currently in memory, then use this command to list the lines on 
the current system printer (the default is the display screen!): 

LIST I Return 1 

If there is a program in memory, you will see something like this: 

10 PRINT "Short program." 
20 PRINT "Good-bye." 
30 END 

1 The subsequent section called "Determining Current System Defaults" shows how to determine which 
device is the current system printer. 

Introduction to the System 2-13 



After the listing is complete!, the system displays the amount of memory currently 
available for BASIC programs and variables at the lower left corner of the screen: 

Available memory = 5629926 

(If there is no program currently in the computer, then the amount of available memory 
is all that will be displayed by LIST.) 

Clearing the Program 
Before you clear a program. you might want to df'terrninf' what thf' f'llfff'nt of'faults 
are so you can reset them if they are modified. Clear the computer's memory with 
the SCRATCH command (see "Clearing the Computer"). The next section provides 
instructions for determining these defaults. 

1 If listing the program takes longer than you want to wait, you can stop it by pressing the I Break I key 

(! CLRI/O I on 98203BjC keyboards: I CliO I on 98203A keyboards). 

2-14 Introduction to the System 



Determining Current System Devices and Binaries 
You can determine the current state of several of these system defaults by using the 
following statements: 

Table 2-4. System Defaults 

,1. .. .&.CIl ...... "' ..... .&.:.I.A.,tI .. a. ..... a.II I.V"1. ......,~J.Cl.un. 

SYSTEM$("PRINTER IS") returns the select code of the current PRINTER IS CRT 
"system printer" (the destination of 
PRINT operations). 

SYSTEM$("PRINTALL IS") returns the select code of the current PRINTALL IS CRT 
"print all printer" (the destination of 
system messages when PRINTALL 
ON is active). 

SYSTEM$("DUMP DEVICE IS") returns the select code of the current DUMP DEVICE IS 701 
"system dump device" (the destina-
tion of DUMP ALPHA and DUMP 
GRAPHICS operations). 

SYSTEMS ("MSI II) displays the current "default drive" device from which 
( the mass storage device that will you booted the 
be used when one is not explicitly BASIC system! 
specified) . 

SYSTEM$("AVAILABLE MEMORY") returns the amount of memory avail- (not applicable) 
able for application programs and 
their data. 

1 If you have ROM-based BASIC, this device will be the first mass storage device found with storage 
media present. See the "Order of Devices Searched by the Boot ROM" section of the "Loading BASIC 
into Memory" chapter for a list of the devices searched by the Boot ROM. 

Introduction to the System 2-15 



Method 

SYSTEM$("VERSION:BASIC") 

SYSTEM$("VERSION:ERR") 

LIST BIN 

Table 2-4. (Continued) 

Explanation Default 

returns the revision number of the BA - (not applicable) 
SIC system. 

returns the revision number of the ERR (not applicable) 
binary (if present), or returns 0 (if the 
binary is not present). To check for 
other binaries, substitute the binary's 
name for ERR in the SYSTEMS function 
call; for instance, 
SYSTEMS ("VERSION: EDIT") would re­
turn the version number of the EDIT 
binary, if currently loaded, or 0 if it is 
not loaded. 

displays a list of all language extension CRT A and CRTB 
and driver binaries currently residing 
in memory. (For further information 
about language extension and driver 
binaries, see the "Language Extensions, 
Drivers, and Configuration" chapter in 
Installing and Maintaining the BASIC 
System.) 

See the the BASIC Language Reference for further capabilities of SYSTEM$; see 
Installing and Afaintaining the BASIC System for information on LIST BIN. 

2-16 Introduction to the System 



Re-Defining Typing-Aid Softkeys 
The default typing-aid soft key definitions are useful, but you may want to define a key 
that is more specific to your own needs. This section describes how to change the current 
definitions of typing-aid keys; it also shows how to store these definitions in a file so you 
can programmatically load them at a later time. 

KBD Binary Is Required 
In order to re-define typing-aid keys, make sure the KBD binary is currently loaded (see 
the preceding section for examples of LIST BIN and SYSTEM$ statements to load and 
use LOAD BIN). 

Examples of Re-Defining Typing-Aid Softkeys 
The first example shows how to re-define softkey lliJ ([IT]) to produce the characters 
"My very own keystrokes" on the display whenever you subsequently press this key. 
Remember that these examples use the ITF keyboard; if you have another keyboard, 
there will be slight differences (such as the availability of editing [}Q] instead of lliJ). 

Example 1 

1. Enter the edit-softkey mode for the desired soft key. There are two ways to enter 
this mode; this example describes one way, and the next example describes the 
other. 

On an ITF keyboard, get into the User 1 softkey menu and press the EDIT key 
(lliJ), and then press lliJ again followed by~. ( On a 98203 keyboard, press 
the I EDIT 1 key, and then press [IT] followed by I ENTER I.) 

The system then displays the key's current definition (on the keyboard input line), 
followed by a message to indicate you can now modify the definition of the softkey: 

~EDIT .. ·-----Displayed on the keyboard input line. 

Editing key l-.--Displayed on the system message line. 

(The keyboard input line is blank if the key currently has no definition.) 

Introduction to the System 2-17 



2. Press []6ill}1 Glear line I to clear the key's current definition. 

3. Enter the new definition. 

Type the desired characters on the keyboard input line. In this example, type: 

My very own keystrOkes. 

4. Exit the softkey-edit mode. 

After you have finished modifying the softkey's definition, press I Return I to exit the 
softkey editing mode and update the softkey's definition. If you don't want to 
update this softkey's definition, press I PAUSE I (~ on an ITF keyboard) to abort 
the re-definition and retain the existing definition. 

5. Verify that the key works as desired. 

Press the soft key []I] (CEIJ). The following characters: My very own keystrokes. 
should be reproduced exactly as you typed them. (If not, go to step 1 and try 
again.) 

6. Press I Shift H Glear line I to clear the line for the next example. 

Example 2 
Let's now suppose that you want to define a typing-aid key that: clears the line you 
are on, types a command, and then executes that command (this is how the RUN and 
CONTINUE softkeys are defined by the system). Here is what you could type: 

EDIT KEY 2 ~ 

I Shift H Glear line II GTRL H Shift H Glear line I LIST I GTRL H Return II Return I 

The notation I GTRL H Return I indicates that you are to hold down the I GTRL I key and then 
press the I Return I key, then release the I Return I key followed by releasing the I GTRL I key. 
The I GTRL I key tells the system that you don't want to execute that key's function, but 
that you want it to produce a sequence of characters on the screen. The sequence begins 
with the inverse-video 1t7' character, CHR$(255), followed by another character; for 
instance, I GTRL ~[]6ill}1 Glear line I produces "~", and I GTRL H Return I produces "[3E". 

After you enter your soft key definition for key 2, pressing key 2 will execute the LIST 
command. If you include a key preceded by I GTRL I (as in the above I GTRL H Return I) the 
following key will be executed when you press the softkey. For example, if you tack a 
I GTRL H Return I at the end of your softkey definition, I Return I will be executed as part of 
the softkey function. 

2-18 Introduction to the System 



Softkey Labels 
You may have noticed the two different soft key labels produced in the preceding examples. 
The label produced in the first example should have begun with the characters My very 

own keys (the rest of the characters in the softkey's definition are not shown in the label) . 

•• •• 

However, the label of the second example was simply LIST. 

You can also use a similar effect of the I Clear line I key in softkey labels to have nice­
looking labels that are not just the first n characters in the key's definition (in which n 
is the width of the softkey label). For instance, suppose that you want to have a key 
that produces the characters MSI II: CS80. 700.0. 1 11 , but you would rather the label be 
HardDisc. Here is what you would enter in the softkey's definition: 

EDIT KEY 1 I Return I 
HardDisc I Shift H CTRL H Clear line I MSI II: CS80. 700.0.111 I CTRL H Return II Return I 

The label HardDisc would be displayed momentarily whenever the key is pressed, but the 
I Clear line I keystroke would soon erase the characters, executing the MSI II: CS80. 700 .0. 111 

command. (The spaces following HardDisc move the '~#" characters out of the label.) 

Introduction to the System 2-19 



Example 3 
When you use some of the soft key menus~ you will see how some softkeys not only echo 
a command onto the command line, they enable you to begin inserting within quotes. 
Example 3 shows you how to do this with the MOVELINES command. 

1. EDIT KEY 1 ~ 

2. (]5lli}-1 Clear line I (to clear the line) 

3. I CTRL H Shift H Clear line I MOVELINES 1111.1111 TO 1111 ~>[;3>[;3>[;3>[;3>[;3>[;3>[;3>[;3>[;3>[;3>[;3+ 

where L3H represents: I CTRL ~(]5lli}-G 
[;3> represents: I CTRL ~G, and 
[;3+ represents: I CTRL H Insert char I 

4. Press I Return I 

Now, when you press key 1, the command line prints the MOVELINES command and 
lets you insert in the first double quotes. The L3H moves the cursor to the beginning of 
the line; the [;3> moves the cursor 11 spaces to the right (to the first set of double quotes), 
and the [;3+ puts you in the insert mode. 

Memory Available for Typing-Aid Definitions 
There is approximately 1024 bytes of memory used by the system for the purpose of 
storing the typing-aid soft key definitions. Since there is a small amount of overhead 
required for each key, there is actually only about 1000 bytes available for keystrokes. 

The maximum number of characters you can put into each definition is 256 characters. 
However, if you produce a 256-character typing-aid soft key definition~on a system with 
a high-resolution display and thrn try to edd it on a systrm with a medium-resolution 
display, you will only be able to get 160 characters into the modified typing-aid definition. 
There is also an additional restriction: attempting to use a softkey definition that contains 
more characters than will fit into the Keyboard Input Line will result in lost characters. 

2-20 Introduction to the System 



Listing the Current Typing-Aid Definitions 
You can list all current typing-aid soft key definitions by executing this statement: 

LIST KEY 

The keys are listed on the current default printer (usually the CRT). 

You can also list them on another device by specifying that device's select code. For 
instance, to list them on a printer, execute a command something like one of the following: 

LIST KEY #PRT 
or 

LIST KEY #701 

Since most printers cannot print the inverse-video '~' that would show up in the keys' 
definitions, LIST KEY substitutes the letters System key: for this character when the 
keys are displayed. For instance: 

Key 2: 
System key: # 
LIST 
System key: E 

I Clear line I key. 

I Return I key. 

File for Typing-Aid Softkeys 
If you have modified any of the softkeys, you might want to store the new definitions 
somewhere. With the STORE KEY statement, you can store all of the current typing-aid 
softkey definitions in a file. Use LOAD KEY to subsequently load these definitions back 
into the computer. 

Storing the Current Typing-Aid Softkey Definitions in a File 
If you want your current typing-aid softkey definitions to be stored III a file called 
"My Keys" , you could use this command: 

STORE KEY IMyKeys" 

If the file already exists, you must use this command: 

RE-STORE KEY "MyKeysl 

Introduction to the System 2-21 



Loading Typing-Aid Softkey Definitions from a File 
To load the typing-aid soft key definitions stored in the preceding example, execute this 
command: 

LOAD KEY "MyKeys" 

Restoring Power-Up Typing-Aid Definitions 
To restore the power-up default definitions, execute the statement without specifying a 
file: 

LOAD KEY 

Defining Typing-Aid Softkeys Programmatically 
You can also write a program that defines the typing-aid softkeys using the SET KEY 
statement. See the "Communicating with the Operator" chapter of BASIC Programming 
Techniques for details. 

2-22 Introduction to the System 



Clearing the Computer 
As discussed in the preceding section, your computer mayor may not be in a desirable 
state . 

• If it is in an undesirable state, then you can "clear" it as described in this section . 

• If everything is acceptable, then you can skip this section and go to "Loading and 
Running Programs" . 

When power is first switched on and the BASIC system is booted, computer memory is 
cleared and various system elements are assigned default values. Turning power off and 
then back on again is one way to clear the computer. However, this is not necessary and 
often is not convenient. An easier and faster way is to use SCRATCH commands. 

There are several forms of this command to allow a choice of clearing actions. The 
following paragraphs give general descriptions of the choices; complete descriptions are 
in the BASIC Language Reference under SCRATCH in the keyword dictionary and in 
the "Reset Tables" of the "Useful Tables" appendix. 

SCRATCH R 

SCRATCH KEY 

SCRATCH C 

SCRATCH 

SCRATCH A 

SCRATCH BIN 

clears the I RECALL I key's buffer. 

clears typing-aid soft key definition(s). See the descriptions of typing-aid 
keys in preceding sections of this chapter for further information. 

clears all variables from the computer's memory, including COM vari­
ables. However, the current program and softkey definitions are left 
intact. 

clears all program lines currently in the computer's memory. It also 
clears all variables which are not in COM. See the "Subprograms" 
chapter of BASIC Programming Techniques for a description of COM. 

clears most everything from the computer's memory, restoring the 
system to its power-on state. The only exceptions are the I RECALL I key's 
buffer, the real-time clock, and the currently loaded binaries. 

removes all of the current binaries in memory (except the driver of the 
currently active CRT display), and re-executes all of the steps in a power­
up operation (except loading and running the "autostart" program). 
See the "Language Extensions, Drivers, and Configuration" chapter of 
Installing and Maintaining the BASIC System for details. 

Introduction to the System 2-23 



What to Do Next 

Task/Topic Chapter 

Learn about the BASIC mass storage system "Mass Storage Concepts" 

Learn how to use and manage files and direc- "Using Files and Directories" 
tories 

Learn how to load and run programs "Loading and Running Programs" 

Learn how to enter. edit. secure. document. "Editing and Storing Programs" 
and store programs 

2-24 Introduction to the Systrm 



Where to Go 
Steps in Installation For Details 

Overview of mass storage organization 3-1 
("What are files and volumes?") 

How to specify volumes 3-5 

Checking a disc's format 3-9 

Hierarchical directories 3-10 

Choosing a directory format 3-13 
(LIF vs. HFS) 

What is initialization? 3-16 

Disc sectors 3-18 

Disc interleave 3-19 

What to do next? 3-20 



Mass Storage Concepts 3 
This chapter helps you understand some detailed concepts related to mass storage 
(storing files, etc., on discs). You should read this chapter to understand how to better 
use your mass storage devices. 

Overview of Mass Storage Organization 
(or "What Are Files and Volumes?") 
As the term "mass" suggests, mass storage devices are designed to store large quantities 
of data. Just how much data constitutes a large amount depends on the device itself. 
Most mass storage devices are capable of storing on the order of hundreds of thousands 
to several million items. 

Mass storage devices are also called "secondary" storage media, the "primary" storage 
being computer memory. Because of this secondary nature, they are not generally 
expected to be as fast in accessing their data as primary storage. 

Besides having the ability to store data, mass storage devices are capable of providing 
means for keeping data organized so that logical groups may be accessed systematically 
and efficiently. The information on a mass storage device is organized into volumes and 
files. 

Mass Storage Concepts 3-1 



A File Is Named Collection of Data 
One of the simplest ways to describe files and volumes is to use an analogy. A file is like 
a set papers on which information is written; we'll compare it to a tabbed chapter of a 
manual. 

Chapter 1: Chapter 2: Chapter 3: 
Manual Program Numeric 
Organization Structure Computation 

1
0 

] 1
0 l 1

0 I 

UUU • • • 

Chapter 17: 
Porting and 
Sharing Files 

I· ~~ 
Tabs have each 
chapter's name 

Figure 3-1. A File is Like a Tabbed Manual Chapter 

Table 3-1. File Comparison 

Attribute Chapter File 

Type of information: Printed characters, Magnetic patterns ( representing 
numbers, or graphics characters, numbers, dots on screen, 

etc. ) 

Access method: Tab/chapter title File name 

Like pages in a chapter, files may contain BASIC programs or more general data­
information to be used by a program, such as numbers and/or text. The name on the 
tab helps you locate the chapter and decide whether or not you want to look in it. 



Volumes Are Collections of Files 
A volume is merely a collection of files. To continue our analogy, a volume is like a binder 
that contains several tabbed chapters: 

I r 

I 1 

Chapter 

Chapter 2 

Chapter 3 

Chapter 4 

Figure 3-2. A Volume is Like a Binder Containing Tabbed Chapters 

Table 3-2. Volume Comparison 

Attribute Book Volume 

Contains: Chapters Files 

How contents listed: Table of contents Directory 

Examples of Mass Storage Volumes 
A flexible disc is typically one volume, as is a tape cartridge. Each of these types of mass 
storage media can hold several files. 

Figure 3-3. Examples of Mass Storage Volumes 

Mass Storage Concepts 3-3 



Some volumes have hierarchical organizations. Here are two examples of hierarchies: 

Textual Representation 

BASIC Programming Techniques 

Chapter 1: Manual Overview 
Manual Organization 
What's in this Manual 

Graphic Representation 

/ ~. Chapter 2: Program Structure 
The Program Counter 
Sequence do···o do···o 

Linear Flow 
Halting Program Execution 
Simple Branching 

Selection 

Program-to-Program Communications 
Chapter 3: Numeric Computation 

Chapter 17: Porting and Sharing Files 

These two representations are two ways of showing the same type of hierarchical 
or superior/subordinate structure. BASIC also supports this hierarchical system, as 
described in the subsequent section called "Hierarchical Directories". 

3-4 Mass Storage Concepts 



How to Specify Volumes 
While it is easiest to use the default volume, there are times when you will want to use 
another mass storage device. In such cases, you will need to know how to specify the 
other volume. The way to specify mass storage devices is to use a volume specifier. If 
you read the "Verifying and Labeling Peripherals" chapter in Installing and Maintaining 
the BASIC System or followed the instructions during installation, you should already 
have the volume specifier of each of your mass storage devices written on a label that 
you placed on the device's front panel. 

Here is the syntax of a volume specifier: 

Examples: 

:CS80.700 
:.700 

:HP9122.702.1 
:.702.1 

:INTERNAL.4 
: .4.1 

This specifier consists of the following parts: 

Table 3-3. Volume Specifier Components 

Component Explanation 

A colon (:) begins the volume specifier, separating the file name from the 
volume specifier (note that it is required even when you are 
performing an operation that makes sense only for a volume--
for instance, INITIALIZE.) 

Mass Storage Concepts 3-5 



Table 3-3. (Continued) 

Component Explanation 

Device type identifies the mass storage device's type. Once the BASIC system 
determines the device type, it can also determine the capacity of 
the device and other information required to determine the access 
method for the device. 

Here are some examples: 

Device Type Description of Mass Storage Device 
----------------- ----------------------------------------------------

if omitted BASIC interrogates the device for its type. 

eS80 any disc in the general class of 
"Command Set/80"devices (such as the 
HP 9122, and most other newer drives). 

INTERNAL an internal, 51/4-inch, flexible-disc drive 
(Models 226 and 236 o~ly). 

HP8290X either an HP 82901 or 82902 51/4-inch, 
flexible-disc drive. 

HP9895 an HP 9895 8-inch, flexible-disc drive. 

For a list of all device types, see the BASIC Language Reference 
entry for MASS STORAGE IS. 

3-6 "Mass Storage Concepts 



Component 

Device 
selector 

Table 3-3. (Continued) 

Explanation 

identifies the interface's select code (4, and 7 through 31) as well 
as the device's primary address (HP-IB devices only). Here are 
some examples of device selectors: 

700 specifies select code 7 and primary address 0 
(note that device selectors with HP-IB 
addressing must contain 3 or 4 digits). 

702 specifies select code 7 and primary address 2. 

800 specifies select code 8 and primary address O. 

1402 specifies select code 14 and primary address 2. 

Unit number tells the system additional information about the device's unit­
number setting. Many devices have hard-wired unit numbers, 
while others use the unit number to identify different portions of 
one disc. For instance, the unit number of the right drive of a 
9122 is 1, while the left drive is unit 0 (note that internal drives 
of Model 236 computers are numbered in the opposite order). 

Volume number identifies the volume number (multi-volume hard discs only, such 
as HP 9133D,HP 9133H, and HP 9133L drives). 

Examples 
Here are several examples of volume specifiers (Note the": ," is not a typographic error. 
If the device type is omitted, the system will determine the device type automatically): 

: CS80 ,700 
or 

: ,700 

Left drive's 
volume specifier_~~~~~~~ 

Cable connected to 
~----- the HP-IB interface 

at select code 7. 

This disc is set to 
HP-IB primary address 0 

(by switches on back.) 

Right drive's sticker (unit 0) 
~ ..... ~:...-_-volume specifier 

sticker (unit 1) 

Figure 3-4. HP 9122D Volume Specifier Example 

Mass Storage Concepts 3-7 



:HP9121,802,1 

or 
:HP8290x,802,1 

or 
: ,802,1 

Left drive's 
volume specifier __ ~~~~~~ 
sticker (unit 0) 

Cable connected to 
------""""--- the HP-IB interface 

at select code 8. 

This disc is set to 
~HP-IB primary address 2 

(by switches on back.) 

Right drive's 
volume specifier 
sticker (unit 1) 

Figure 3-5. HP 82901D Volume Specifier Example 

:CS80,1400,O,1 
or 

: ,1400,0,1 

Flexible disc's 
volume specifier­
sticker (unit 1) 

Hard discs 
volume specifier 
sticker (unit 1, 
volumes 0 .. 3) 

Cable connected to 
~--...-- the HP-IB interface 

at select code 14. 

Figure 3-6. HP 9133L Volume Specifier Example 

3-8 "Mass Storage Concepts 



Checking a Disc's Format 
To determine whether or not a disc is formatted, check to see if there is a directory on 
the disc. To do this, look at the catalog with the CAT command (you may need to specify 
the volume specifier if you loaded BASIC from a flexible disc): 

CAT I Return I Catalogs the default drive. 

CAT ":.700" I Return I Catalogs the volume :.700 

There are two classes of results for a CAT operation: 

• A catalog is displayed (indicating the disc is formatted) 

• An error is reported (indicating the disc is not formatted; Error 1 indicates that 
the disc is HFS formatted but the HFS binary has not been loaded). 

LlF 

The Disc Is Formatted 

:CS80.700.1 
LABEL: B9826 

:CS80.700.1 
LABEL: B9826 

HFS FORMAT: HFS 

The top catalog listing is shown for a 
LIF volume, and the bottom listing is 
for an HFS volume. 

If you are not sure which format you 
should use, see the next section, "Choos­
ing a Directory Format" . 

The Disc Is Not Formatted 

Error 85 Media uninitialized 

Error 84 Record not Found 

Mass Storage Concepts 3-9 



Hierarchical Directories 
A directory contains information about files, such as file name, size, and type. In 
hierarchical directory structures, a directory is itself a file, but it is used only to organize 
and control access to other files. This section describes the two BASIC directory formats 
that implement hierarchical directories: 

• Hierarchical File System (HFS) format (used with HP-UX, some BASIC, and some 
Pascal systems) 

• Shared Resource Manager (SRM) format (the disc format is actually called Struc­
tured Directory Format, or SDF, on catalog listings of these directories). Note that 
SRM system require an SRM controller and lets several workstations share a disc. 
You cannot use HFS as a way of sharing a disc without needing a controller. 

What Is a Hierarchy? 
As the word "hierarchy" suggests, hierarchical directories are arranged in "levels." A 
hierarchical directory may contain either files or other directories. 

• A directory is "superior" to the files and directories it contains. 

• A file or directory within a directory is said to be "subordinate" to the containing 
directory. 

f- fl 

- f2 

r ass i gnments 

f- schedule 

I PROJECTS I 

r- ass i gnments 

f- schedule 
I 
f- Rp r i 1 

I L_ May 

@lld;:_21 
Figure 3-7. Hierarchy of Directories 

3-10 Mass Storage Concepts 



In the Figure 3-4, the directory named KATHY is subordinate to the directory named 
Project_one because Project_one contains the information describing KATHY. The direc­
tory named PROJECTS is at level 1, the "root" level. You cannot create a directory at a 
higher level than the root level. 

Each directory keeps information about each file or directory immediately subordinate 
to it, in fixed-format records. Each time a subordinate file or directory is added to a 
directory, one of these records is added to the directory. 

Uses of the Hierarchy: An Example 
Suppose you're managing several projects, each of which needs to access a shared disc. To 
organize the files for each project separately, you can create a directory for each project 
(as shown in the illustration). Within each project directory, you can have a subordinate 
directory for each person working on the project as well as files to be shared among all 
users. Each person may then construct a directory/file system for organizing files. 

Because files at different locations in the directory structure can have the same file name, 
you can use generic file names to identify similar project functions in the different projects. 
At the same time, the division into separate directories isolates the projects, and thus 
their individual functions, from one another. For example, the file named budget in the 
Proj ect_one directory is distinct from the file named budget in the Proj ect_two directory. 

Directories also limit the number of files users must deal with at anyone time. For 
example, people working on Project_one (see illustration) need never see the files in 
Proj ect_ two and may, in fact, confine most of their activity to within their own directories. 

To maintain security, BASIC provides the capability of protecting access to directories 
and files. For example, you may wish to allow only members of a project team to read 
that project's files. Or, you may wish to prevent other users from altering the contents 
of a personal file. See the "Protecting Files" section of the "Using Directories and Files" 
chapter. 

Mass Storage Concepts 3-11 



Referring to Directories and Files in the Hierarchy 
To access either a directory or a file, you must specify its location in the hierarchical 
directory structure. This location is specified by a list of directories, called a directory 
path, that you must follow to reach the desired file or directory. Directory names in the 
list are delimited by a slash ( / ). 

For example, in the directory structure illustrated previously, the file specifier: 

"/PROJECTS/Project_one/JOHN/fl" 

defines the "directory path" to the file f 1 through its superior directories. 

The directory path to a file begins at either: 

• the root level, or 

• the current working directory. 

The current working directory is the directory specified ,by the most recent MASS 
STORAGE IS statement. 

The BASIC Language Reference discusses the rules for specifying SRM and HFS files 
and directories. 

3-12 :Mass Storage Concepts 



Choosing a Directory Format 
On the Series 200/300 BASIC system, there are three directory formats available for 
discs (and other mass storage media): 

• Logical Interchange Format (LIF) 

• Hierarchical Fiie System (HFS) 

• Structured Directory Format (SDF, used on Shared Resource Manager, or SRM, 
systems). 

General Recommendation 
The general recommendation is to: 

• use HFS format with hard discs 

• use LIF format with flexible discs. 

Note 

If you wish to share a disc between several workstations, you need 
an SRM system. HFS or LIF are only disc formats and not systems 
with a controller like SRM. 

To show you why these are recommended, see the characteristics of each format in the 
following table. 

Mass Storage Concepts 3-13 



Criteria for Choosing a Directory Format 
Here are the criteria in choosing between LIF and HFS directory formats. 

Feature HFS LIF For More Info 

Directory structure Hierarchical Single directory on See preceding examples, 
(multi-directory) each volume. and the "Using Files and 
structure. Directories" chapter. 

Multiple systems on HP-UX, BASIC, BASI C and Pascal See Installing and Main-
same volume and Pascal systems can share a disc. taining the BASIC System 

can share a disc. 

File compatibility "Text" files are the "ASCII" files are See the "Porting and Shar-
interchange meth- the interchange ing Files" chapter of BA-
od. method. SIC Programming Tech-

mques. 

Extensible files Files are extensible File length is fixed. See "Data Storage and Re-
( w hen a file would trieval" chapter of BASIC 
otherwise overflow, Programming Techniques. 
the system automa-
tically adds 
space to it) 

Access times Generally slower Generally faster For more exact data, you 
than LIF. than HFS. can use the benchmarking 

methods shown in the 
"Efficient Use of the Com-
puter's Resources" chapter 
of BASIC Programming 
Techniques. 

TRANSFER Not really imple- True background See the "Advanced Trans-
mented as a back- process and high fer Techniques" chapter of 
ground process. data rates. BASIC Programming Tech-

niques. 

Overhead required Requires slightly Requires slightly See the next section for ex-
more overhead than less overhead than amples. 
LIF. HFS. 

3-14 i'vfass Storagp (;oncppts 



Examples of HFS Overhead 
This section shows some figures regarding how much of a disc is used as "overhead" on 
an HFS volume. (Overhead is the space on the disc required to store just the directory 
format and not any data files.) 

Disc Size Approximate Overhead 

single-sided 31h-inch, and 44 % (256-byte sectors) 
51/4-inch flexible discs 

double-sided 31h-inch flexible discs 22% (256-byte sectors) 
18% (1024-byte sectors) 

55 Megabyte hard disc 6% 

130 Megabyte hard disc 6% 

In addition, you should keep the disc less than 90% full for optimum performance. 

These figures show only the "extremes" of the spectrum; however, they do show that: 

• The overhead for larger hard discs is fairly constant at about 6% . 

• Overhead for flexible discs may be large. 

Mass Storage Concepts 3-15 



What Is Initialization? 
When a "blank" disc is shipped from the factory, there are no files on it. In fact, there 
is not even an empty directory on it. You will need to put a directory on the disc before 
using it. (Some computer systems and documentation call this "formatting" a disc.) The 
"System Disc Utility" (DISC_UTIL) or the INITIALIZE statement will do this for you. 

1 
1 

"Blank" Disc 
aefore Initialization 

Random 
Magnetic 

Patterns 

1 
J 

Discription 
of Volume 

Discriptlon 
of Each Flle 
(initially an 

"empty" directory) 

Same Disc 
After Initialization 

(UF'Volumes Only) 

Volume Label 
Volume Size 

Directory Type 
Etc. 

Space for 
Each Flle'.: 

Flle Name 
Flle Type 

Flle Size 
TIme Stamp 

Etc. 

Space for the 

Contents of il ::o~::ion In 1 
Each Flle 

(initially "null" data) 

11 J 
1 HFS & SRM volume. have different .tructure., .ince they 

can have multiple directories on each volume. 

3-16 i'vfass Storagp (;oncppts 



Bad Sector Scan 
Initialization writes "null" data onto the disc, and then reads the data to verify that it 
was written correctly. If the data was stored properly in a particular "sector" of the disc, 
then that sector is considered to be functional. However, if what is read back from the 
disc is not what was written onto it, then the sector is considered "bad" and is marked 
accordingly-or "spared" (and is not used subsequently). 

Note 

Note that initialization is also a good thing to do periodically to 
remove "bad" sectors from use. (But remember to first make a 
back-up copy of the information on the disc, since all files will be 
overwritten! ) 

Mass Storage Concepts 3-17 



Disc Sectors 
Data on mass storage devices is written in "sectors". A sector is a set of contiguous bytes 
(eight bits, or binary units) on the disc (on the same track). A sector is the smallest unit 
of data that can be written and read. If you want to change one byte on a disc, you must 
read the entire sector, change the byte, then write the entire sector to the appropriate 
location. 

Figure 3-8. Discs are Accessed by Sectors 

Sector/Volume Size Option 
With this BASIC system, sector sizes of 256 and 1024 bytes are available. The "System 
Disc Utility" uses the default sector/volume-size option of 1, which specifies 256-byte 
sectors. If you want a non-default sector size, then you must use the INITIALIZE 
statement. 

3-18 Mass Storage Concepts 



Disc Interleave 
Interleaving a disc causes the sectors on the disc to be numbered according to a 
specific interval. For instance, an interleave factor of 1 causes sectors to be numbered 
consecutively. A factor of 2, on the other hand, causes the system to skip every other 
sector. The following drawing illustrates these two interleave factors. 

Figure 3-9. Examples of Disc Interleave 

The BASIC system numbers each sector on the disc using the same interleave factor; 
that is, each file cannot have a separate interleave factor. 

The purpose of disc interleave is to increase data-transfer rates, as demonstrated in the 
following example. Suppose that we are entering data from a spinning disc; suppose 
also that the data have formats which are different from the computer's internal data 
formats. Consequently, after each item is read, the computer must change the data from 
the disc's format to the computer's internal format. And in the meantime, the disc is 
still spinning. 

If the processing of all items in a sector takes more time than it takes for the next sector 
to pass under the read/write head, then the system must wait one full revolution of the 
disc until the next sector again passes under the head. By interleaving a disc, you can 
provide time for this processing, thus not making the system wait as long until the next 
sector passes under the read/write head. 

Mass Storage Concepts 3-19 



You can choose the interleave factor when you initialize a disc using the INITIAL­
IZE statement (but not when you initialize it using the "System Disc Utility" -the 
DISC_UTIL program). See the Installing section of Installing and Maintaining the BA­
SIC System. 

What to Do Next 

Task/Topic Chapter 

How to run BASIC programs "Loading and Running Programs" 

How to store files "U sing Files and Directories" 

How to edit programs "Editing and Storing Programs" 

3-20 rvfass Storage Concept" 



Where to Go 
Steps in Installation For Details 

A brief look at loading and running programs 4-1 

A closer look at loading programs 4-4 

Using LOAD 4-4 

Using GET 4-5 

A closer look at running programs 4-7 

What to do next? 4-14 



Loading and Running Programs 4 
In this chapter, you will learn how to load and run programs written in BASIC. 

A Brief Look at Loading and Running Programs 
This section gives you a brief overview of loading and running BASIC programs. To load 
and then run a program, follow this procedure: 

1. If the program is on a flexible disc, insert the disc containing the program into one 
of your disc drives. The best choice is the "default drive," since you will not have 
to include the drive's volume specifier when you use this device. If the program is 
on your hard disc, continue with Step 2. 

2. Execute the CAT statement to make sure your program is on the disc (include the 
volume specifier written on the sticker on your disc drive if the program is on a disc 
which is not the default drive; for example : ,702,1). 

CA T I Return I 
• if you see the name of your file in the catalog listing, you are ready 

to load and run it 

• if you don't see your file in the catalog listing, then remove the disc and 
insert the one that contains your program. Use CAT again to verify that the 

program is on the disc. 

3. Use the LOAD or GET command to load the program into computer memory: 

LOAD llfilenamell if the file is type PROG (refer to the CAT listing) 

GET llfilename ll if the file is type ASCII or HP-UX (refer to the CAT listing). 

Loading and Running Programs 4-1 



Examples 

:CS80,700 
VOLUME LABEL: B9836 
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS 

MY_PROG 
VISLTOOL 
GRAPH 
GRAPHX 

PROG 
ASCII 
BIN 
BIN 

14 
29 

171 
108 

256 
256 
256 
256 

16 
30 
59 

230 

Here are some statements to load PROG and ASCII programs. Since MY _PROG is type 
PROG~ you would use: 

LOAD "MY_PROG II 

to load it. For the file VISI_TOOL, you would use: 

GET "VISI_TOOL" 

assuming of course the file is in the current directory. If we used a file located on a 
disc not in the default drive. a volume specifier would be required. For example, if after 
labeling the discs following the procedures in "Verifying and Labeling Peripherals" in 
the Installing and Maintaining the BASIC System manual, we had a PROG file named 
OUR_PROG on a disc with volume specifier CS80, 700 ,1, here is the statement to load the 
file: 

LOAD II OUR_PROG: ,700, 1" 

Note that we don't need to include the CS80, and we follow the file name immediately 
with a colon (:) and a comma (,) then the numbers. 

4=2 Loading and Running Programs 



4. To run the program you just loaded, type: 

RUN I Return I 

On 98203 keyboards, you can also use the I RUN I key. On ITF keyboards, @] in the 
System menu, and User 1 and 2 menus serves the same purpose. (If key labels are 
not currently displayed, then execute KEY LABELS ON or press the I Menu I key to 
turn them on.) 

Note about Software Security 

Some software is "secured" against being run without proper au­
thorization which is usually accomplished by the software requiring 
a special "codeword" that is somehow related to: 

• your machine's serial number (stored in permanent memory) 
• a serial number stored in an optional HP 46084 ID Module 

If the program prompts you to enter a codeword, you will need to 
get it from the software vendor. 

Loading and Running Programs 4-3 



A Closer Look at Loading Programs 
There are two statements used in BASIC for retrieving programs from mass storage: 

• LOAD-~retrieves programs stored in a PROG file (using STORE) 

• GET-retrieves programs stored in an ASCII or HP-UX file (using SAVE). 

These statements can be executed from the keyboard as commands or induded in a 
program. vVhen executed as cOIIlmands 1 they are used to Lring a program into the 
computer's memory so it can be edited or run. When induded within a program, they 
are used to link together the segments of large programs. 

Using LOAD 
The LOAD command brings in programs from a PROG file, with the option of beginning 
program execution at a specified line. It dears any existing program from the computer's 
memory and loads the contents of a PROG file. For example, the command: 

LOAD "CANNON" 

clears the program memory and brings in the contents of the PROG file called "CAN­
NON". 

Possible Errors 

• If the file is not a PROG file, the LOAD is not performed and error 58 (improper 
file type) is reported. 

• If the file is not found on the volume, error 56 (file not found) is reported. 

• If any lines require a version of BASIC different from the one currently installed, 
those lines cannot he listed. edit('d, or execut('d. HOW(,V(,L the LOAD operation 
proceeds without error. 

4-4 Loading and Running Programs 



Using LOAD to Specify Run Line 
The LOAD command can also specify that program execution is to begin. This is done 
by adding a line identifier. For example, the command: 

LOAD "STONE",10 

causes the computer to load the program in file "STONE" and begin execution at line 
10. The line identifier may be a label or a line number, but it must identify a line in the 
main program segment (not in a subprogram or user-defined function). See the "Program 
Flow" chapter of BASIC Programming Techniques for further information. 

The LOAD command cannot be used to bring in arbitrary program segments or append to 
a main program like GET can. Subprogram segments can be appended using LOADSUB, 
as described in the "Subprograms" chapter of BASIC Programming Techniques. 

Using GET 
The GET command brings in programs or program segments from an ASCII or HP­
UX file, with the options of appending them to an existing program and/or beginning 
program execution at a specified line. 

GET with Automatic Program Clearing 
To clear any existing program from the computer's memory and bring in the contents of 
an ASCII or HP-UX file, the command is simply the keyword GET followed by the file 
name. For example, this command: 

GET "FORMULA" 

clears any BASIC program currently in memory, and brings in the contents of the ASCII 
or HP-UX file called "FORMULA" -assuming that the file contains valid program lines. 

Possible Errors 

• If the first line does not start with a valid line number, the GET is not performed 
and error 68 (syntax error during GET) is reported. 

• If the file is not an ASCII or HP-UX file, the GET is not performed and error 58 
(improper file type) is reported. 

• If the file is not found on the volume, error 56 (file not found) is reported. 

Loading and Running Programs 4-5 



Assuming the file contains valid program lines that were placed in the file by a SAVE 
operation, and their line numbers are still valid after any renumbering that is specified, 
the lines will be entered into program memory. If there is a syntax error in any of the 
program lines in the file, the lines in error are turned into comments, error 68 is reported, 
and the syntax error message is sent to the system printer. This might happen if the 
program was written and saved on a computer that had a vf"rsion of BASIC different 
from the one being used for the GET operation. This may also happen when a "language 
extension" binary is required for using the keyword, but the binary is not currently loaded 
into memory. 

Using GET to Specify Run Line 
GET can also specify that program execution is to begin. This is done by adding two 
line identifiers: 

• thf" first line numlH'r specifif"s the placement and renumbering 

• the second line number specifies the line at which execution is to begin. 

For example, assume there is no program in memory and an ASCII file "RATES" contains 
valid program lines. A typical command to bring the contents of this file into memory 
and begin execution at the line 10 is: 

GET "RATES",10,10 

If there is already a program in memory, an append and run is allowed. For example: 

GET "RATES", 250,100 

specifies that any existing lines from 250 to the end of the program in memory are to be 
deleted, the contents of file "RATES" is to be renumbered and appended to the program 
in memory beginning at line 250, and then normal program execution is to begin at line 
100. Although any combination of line identifiers is allowed, the line specified as the 
start of execution must be in the main program segment (not in a SUB or user-defined 
function). Execution will not begin if there was an error during the GET operation. For 
further information about this use of GET, see the "Chaining Programs" section of the 
"Program Flow" chapter in BASIC Programming Techniques. 

Using GET to Append 
You can also use GET to append the contents of an ASCII file to an existing program. 
See the "Editing and Storing Programs" chapter or the BASIC Language Reference for 
details. 

4-6 T ,n~rlin(J ~Drl Thmninp' PnwramR --- '--"""-........... ~--o -~ - - - - "--------0 - ~ - 0 ---



A Closer Look at Running Programs 
There are two ways to start a program running: 

• press the I RUN I key (@] in the System and some User menus of ITF keyboards) 

• execute a RUN command. 

You can include a line identifier in a RUN command to indicate where program execution 
is to begin. For example, 

RUN 200 

or 

Prerun 
Prerun is automatically performed by BASIC when you execute RUN or press the I RUN I 
key. There are several reasons for the prerun. 

• To reserve sufficient memory for all the variables in the program (except those that 
are ALLOCATEd). This includes all variables in COM statements, those declared 
in DIM, REAL, and INTEGER statements, and all implicitly declared variables. 
The "Numeric Computation" chapter of BASIC Programming Techniques explains 
the declaration of numeric variables; the "String Manipulations" chapter covers the 
dimensioning of string variables; and the "Subprograms" chapter describes COM. 

• To locate all the context boundaries. These are defined by the END, SUB, 
SUBEND, DEF FN, and FNEND statements. 

• To ensure correct interaction between lines. The "Editing and Storing Programs" 
chapter explains that BASIC checks for syntax errors before it stores a program line. 
Although this is true, there are some errors that can't be detected by looking at 
a single line. For example, a program line that uses properly placed subscripts 
can appear to be correct when it is stored. However, if that line ref~rences 

three dimensions in an array that had previously been declared to have only two 
dimensions, it is in error. To detect an error of that kind, the computer needs 
to "look at" the entire program to see all the dimension statements as well as the 
variables used in each line. Some other examples of this kind of error are specifying a 
GOTO or GOSUB to a line that does not exist or improper matching of statements 
like FOR ... NEXT and IF ... END IF. At prerun, BASIC also "links" line identifiers 
(and line numbers) to all references to them, so that program execution will be 
faster. 

Loading and Running Programs 4-7 



Normal Program Execution 
The term "program execution~: is used to describe the process of the BASIC system 
completing the tasks "described" by a program. The steps that the system performs 
during program execution are summarized below. 

1. Determine which program line is to be acted on next. 

2. Identify the statement that follows the line number and label (if any) on that line. 

3. If the statement has a run-time action. perform the action described in the 
statement. 

4. Repeat steps 1 through 4 until instructed to pause or stop (such as by an END, 
STOP, or PAUSE statement~ or hy a I RESET I from the kpyhoard). 

The continuing process of determining which line is to be executed next is discussed 
in detail in the chapter called "Program Flow" ill BASIC Programming Techniques. 
The RUN command determines which line is acted on first. Executing RUN with no 
parameters~ or pressing the I RUN I key, causes the execution process to begin at the first 
(lowest-numbered) line of the main program. Execution can be started anywhere in 
the main program by using the RUN command with a line identifier. For example, the 
following command causes execution to begin at line 220. if there is such a line. 

RUN 220 

If there is no line 220 in the main program, execution begins with the line whose number 
is closest to and greater than 220. 

ThE' lin£' id£'ntifiE'r can also h£' a lah£'l. For example. th£' following command causes 
execution to begin with the line labeled "SpoLrun". 

If there is no such labeL an error results. 

Also. if a ~tartillg line is specifipd. that lin(' mllst bE' in tIl{' main program. An error 3 (line 
not found in current context) results if you attempt to start a program ill a user-detiued 
function or subprogram. Even if the starting point is correctly specified. be alert to the 
effects of starting a program in the middle. Skipping ovpr a section of thE' program may 
result in null values for some of the variables. Although it is legal to start in the middle 
of a subroutine. an error is generated when the RETURN statement is executed. 

4-8 Loading and Running Programs 



Live Keyboard 
When a program is running, the keyboard is still active. Commands can be executed, 
variables can be inspected and changed, and the state of the computer can be changed. 
The term "live keyboard" is used when talking about commands that are executed 
during a running program. One of the principal uses for live keyboard commands is the 
troubleshooting and debugging of programs in the development stage, as discussed in the 
"Debugging Programs" chapter of BASIC Program:mi'ng Tech·niq-ues. See ~~IIltroduction 
to the System" for tables showing how to pause, stop and continue a program. 

Example of Controlling Program Execution 
To demonstrate some of the interaction between a program and the keyboard, enter the 
following simple program. 

10 DISP "Next command?" 
20 X=O 
30 PRINT X; 
40 X=X+1 
50 WAIT .1 
60 GOTO 30 
70 END 

1. After you have entered the program, execute RUN and observe the CRT. Notice 
that the DISP message appears in the display line, the printout area fills with a 
sequence of numbers, and the run light indicates that a program is running. 

User 1 Caps Running 
"Program-Status" Indicator 

1--- (ITF Keyboard Only) 

---"Run Light" 

Loading and Running Programs 4-9 



2. Press I PAUSE I (~ on an ITF keyboard). The printout of numbers stops, and 
all the data on the CRT remains unchanged. The run light now indicates that the 
program is paused and can be continued. The program line that appears at the 
bottom of the CRT is the next line that will be executed when program execution 
resumes. 

User 1 Caps Paused I---"Program-Status" Indicator 

---"Run Lighf 

3. Press I STEP I ([IT] on an ITF keyboard) a few times. The program is executed one 
line at a time, as indicated by the lines changing at the bottom of the CRT. Notice 
that the program is still paused and continuable after each press of the I STEP I key. 
The I STEP I key can be a great help when you are trying to find certain kinds of 
problems. The "Debugging Programs" chapter of BASIC Programming Techniques 
gives the details of this and other debugging tools. 

System Caps Paused ---"Program-Status" Indicator 

~ ~; ___ uRun Light" 

--------------
4. Press I CONTINUE I (@] on an ITF keyboard). The printout on the CRT resumes with 

the next number in the sequence. The run light again indicates that a program is 
running. 

System Caps Running 1--- "Program-Status" Indicator 

,---"Run Light" 

4-10 Loading and Running Programs 



5. Press I Shift ~~ (ITF keyboard) or I STOP I. The printout of numbers stops, and all 
the data on the CRT remains unchanged. However, the run light is off, indicating 
a stopped condition. 

System Caps Idle I ' ·Program-Status· Indicator 

____________ ..... J 4'---No "Run Light" 

6. Press I CONTINUE 1 ([][) on an ITF keyboard). An error results, because a stopped 
program cannot be continued. 

Error 122: Program not continuable 

System Caps Idle - "Program-Status" Indicator 

- No "Run Light" 

7. Press I RUN 1 ([ill on an ITF keyboard). 

The program runs again, but the number sequence has restarted from the beginning, 
not from the next number in the sequence. RUN causes the program to restart, 
not resume. 

System Caps Running 1---"Program-Status" Indicator 

---"Run Light" 

Loading and Running Programs 4-11 



8. Type X=l and press I Return I. Notice that the llluubers being printed start over with 
"1". The live keyboard was used to change the value of "X". and the program used 
the new value from the keyboard. 

System Caps Running 1--- "Program-Status" Indicator 

--- "Run Light" 

9. Press I Reset I. The program stops and the data remains in the printout area, but 
the display line is cleared and the message BASIC Reset appears at the bottom of 
the CRT. Although the clearing of the display line seems like a minor effect, it 
indicates an important point. I Reset I and I Stop I have different effects on interfaces 
and peripheral devices. This aspect of I Reset 1 is summarized in the "Reset Tables" 
in the "Useful Tables" appendix of the BASIC Language Reference and is discussed 
fully in the BASIC Interfacing Techniques manual. 

System Caps Idle 

J 
· "Program-Status" Indicator 

"·---No "Run Light" 

------------~ 

10. Press I RUN 1 ([ill on an ITF keyboard). Then type WAIT 5 and press I Return I. Notice 
that the run light changes to indicate that a keyboard command is being executed 
and the printout is delayed for five seconds while the live keyboard command is 
processed. Actually, the run light changed when the X=l command was executed in 
step 8. but it may have happened so fast that you didn't see it. 

System Caps Command 1--- 'Program-Status" Indicator 

* ---"Run Light" 

4-12 Loaning :mn Rllnning Programs 



11. Press I PAUSE 1 (~ on an ITF keyboard) and then type EDIT and press I Return I. 
The display on the CRT changes to show the program. The line you were editing 
last appears in the current-line position. Notice that the run light is still visible in 
the lower right-hand corner and it indicates that the program is paused. 

User 2 Caps Paused 1--- "Program-Status" Indicator 

I---"Run Light" 

12. Press I CONTINUE 1 (@] on an ITF keyboard). The CRT returns to normal mode, 
and the printout of numbers continues in sequence. However, the previous data on 
the display was lost when the CRT was used for EDIT mode. 

System Caps Running 1--- "Program-Status" Indicator 

,---"Run Light" 

13. Press I PAUSE 1 (~ on an ITF keyboard). Then type EDIT 50 and press I Return I. 
The CRT changes to EDIT mode and the program appears again. This time, line 50 
is in the current-line position. Notice that the run light indicates that the program 
is paused. Change line 50 to WAIT .2 and press I Return I. The new line 50 is entered, 
but the run light changes. Editing the program caused it to move from the paused 
state to the stopped state. 

User 2 Caps Idle --- "Program-Status" Indicator 

1---No "Run Light" 

Loading and Running Programs 4-13 



14. Press I CONTINUE I ([g] on an ITF keyboard). An error results. As mentioned earlier, 
a program can be viewed while it is paused, but it cannot be changed. Once any 
program line has been changed, the program is no longer paused, and I CONTINUE I 
is not allowed. 

System Caps Idle 1---"Program-Status" Indicator 

1--- No "Run Light" 

This demonstration covers most of the highlights of live keyboard, program states, and 
the run light. The "waiting for input" indication can be seen when using the INPUT and 
LINPUT statements described in the chapter of BASIC Programming Techniques called 
"Communicating with the Operator". The "paused with I/O completing" indication is 
not described in this manual. It is a special state that results from the use of TRANSFER 
and is discussed in the BASIC Interfacing Techniques manual. 

What to Do Next 

Task/Topic Chapter /Section 

Learn how to use and manage files and direc- "Using files and Directories" 
tories 

Learn about each key on your keyboard 

Learn about editing and storing programs 

"Keyboard Reference" 

"Editing and Storing Programs" 

Learn about utilities available with the BASIC "BASIC Utilities Library", 
system InstaLLing and Maintaining the BASIC Manual 

4-14 Loading and Running Programs 



Task/Topic 

Finding a..Tld specifying files 

Is the file on the default volume? 

Changing the default volume and current 

Creating and using hierarchical directories 

A closer look at file catalogs 

LIF catalogs 

HFS catalogs 

SRM catalogs 

General file management operations 

Closed vs. open files and hierarchical 
directories 

Protecting files 
(PROTECT, PERMIT, LOCK/UNLOCK) 

Copying files and volumes (COPY) 

Renaming files (RENAME) 

Purging files (PURGE) 

Volume labels (LIF and HFS volumes only) 

Enabling checkread verification 

I 
(CHECKREAD) 

_ What to do next? 

Where to Go 
for Details 

5 1 

5-1 

5-6 

5-7 

5-13 

5-14 

5-15 

5-17 

5-21 

5-21 

5-21 

5-32 

5-34 

5-35 

5-39 

5-40 

5-41 



Using Directories and Files 5 
The main use of a computer is to run programs that process some sort of data. Both 
programs and data can be stored in files, which reside in mass storage volumes. The files 
in a particular volume are listed (and described) in directories. This chapter describes 
general management of directories and files. 

Finding and Specifying Files 
A file is a collection of information accessed by a single name. A volume is a collection 
of files. (For an introductory explanation of volumes and files, see the "Mass Storage 
Concepts" chapter of this manual.) This section shows how to locate and specify BASIC 
files. 

Is the File on the Default Volume? 
Use the CAT (catalog) statement to determine the names of the files on a volume. 

If you do not specify a volume, the default volume will be assumed. (Examples of 
specifying a volume other than the default volume are presented subsequently.) 

CA T I Return I 

You should get a listing similar to this, which you can visually scan for the presence of 
the desired file(s). 

:CS80,700 
VOLUME LABEL: B9836 
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS 

MyProg PROG 
VisiComp ASCII 
GRAPH BIN 
GRAPHX BIN 

Names of the 
files on the volume 

14 
29 

171 
108 

256 
256 
256 
256 

16 
30 
59 

230 

U sing Directories and Files 5-1 



Sending Catalogs to External Printers 
The CAT statement normally directs its output to the current PRINTER IS device (the 
default is the CRT display). The CAT statement can also direct the catalog to a specified 
device 1 as shown in the following examples: 

CAT TO #701 
CAT TO #External_prtr 
CAT TO #Device_selector 

The parameter following the # is known as a device selector and is further described 
in the chapter of BASIC' Programming Terhnique8 callE'd "lT~ing a Printer" anrl in thf' 
Glossary of the BASIC Language Reference. 

Specifying Files on the Default Volume 
To spf'cify a file on thf' default volume. merely nsf' its name. Here are examplE'S of 
accessing files from the current default volume: 

LOAD "MY_PROG" 
GET "PROG_ASCII" 
PURGE "A_FILE" 

Specifying Files Not on the Default Volume 
If the file is not on the default volume or not in the current working directory (if using 
a hierarchical directory), then you will need to do one of the following things: 

• Identify the volume in the file specifier. For instance: 

LOAD "MY_PROG: .700" 

• Change the current working directory and/or default volume. For instance: 

MASS STORAGE IS "/USERS/MARK" 
LOAD "MY_PROG" 

MASS STORAGE IS ":.700" 
LOAD "MY_PROG" 

Let·s first take a closer look at the alternative of specifying the volume with the file name. 

5-2 IT sing Directories and Files 



Directory, File, and Volume Specifiers 
Files can be uniquely identified by specifying the following information: 

• The directory in which the file resides (if it is in a hierarchical directory structure). 

• The file's name. (If a LIF or SRM file is currently "protected", you will need to 
include the "protect code" or "password" with the file name. If an HFS file is 
"protected", you will need to make sure you have the correct access permission. 
See the subsequent section of this chapter called "Protecting Files" for details.) 

• The volume on which it resides. (If the file is on the default volume, then you don't 
need to specify the volume; BASIC assumes the file is on the default volume when 
you don't specify one.) 

Here is a syntax drawing of the components of a file specifier: 

literal form of file specifier: 

Using Directories and Files 5-3 



Files Not in the Current Working Directory 
(Hierarchical Directories Only) 
If you want to specify a file (in a hierarchical directory) but it is not in the current 
working directory, then you must include this information in the file specifier. 

Here is an example directory structure that will he used in the subsequent examples in 
this section. None of the examples change the default volume; all remain in the directory 
structure of the current default volume. (The next section shows examples of changing 
the current default volume.) 

3 

DEC SCHED 

(root) 

r PROG 1 

t PROG 2 

PROG 3 

For instance, to catalog the root directory of the current default volume, you type: 

CAT "/" 

To load the file ROOT _PROG from the root directory, you type: 

Next, to catalog the "USERS" directory: 

CAT "/USERS" 

which gives you a list of the files MARK, JOHN and KEITH. To load the file "PROG_3" 
from the directory named "JOHN" (subordinate to the directory named "USERS" in 
the root): 

LOAD "/USERS/JOHN/PROG_3" 

5-4 U sing Directories and Fill?" 



This example catalogs the directory which is superior to the current working directory: 

CAT " .. " 

If you were located in the MARK directory, for example, this command would catalog 
the USERS directory (located above MARK in the above diagram). 

Files Not on the Default Volume 
If the file is not on the default volume, then you must include the volume specifier. The 
volume specifier is the information on the label which you should have affixed to each of 
your mass storage volumes during installation. (If not, see the "Verifying and Labeling 
Peripherals" chapter in Installing and Maintaining the BASIC System manual. 

Here is a pictorial description of a typical hardware configuration (a device with both a 
hard and a flexible disc drive): 

Flexible disc's 
volume specifier 
sticker (unit 1) 

Hard disc's 
volume specifier 
sticker (unit 0) 

Cable connected to 
~-...... -- the HP-IB interface 

at select code 7. 

This disc is set to 
"'--HP-IB primary address 0 

(by switches on back.) 

The following LOAD statement specifies the file named "MY _PROG", located on the 
volume connected to the computer through the HP-IB interface at select code 7, with 
primary address 0, and unit number 1: 

LOAD IMY_PROG:CS80.700.1" 

or 
LOAD liMY _PROG: .700.1" 

The following CAT statement catalogs the hard-disc volume in the above example; it is 
at the same select code and primary address, but it has a unit number of 0 (which is the 
default when the unit number is not specified): 

CAT ":.700" 

This example catalogs another volume (at select code 8, primary address 2, unit number 
1): 

CAT ":.802. 1" 

Using Directories and Files 5-5 



Changing the Default Volume and Current Working Directory 
The following statement sets the default mass storage to an HP 9133 drive at interface 
select code 7 with primary address 0; unit number 1 specifies the flexible-disc drive: 

MASS STORAGE IS ":CS80,700,1" 
or 

MSI ":,700, 1 " 

If the volume has a hierarchical directory structure (HFS volumes) 1 then you may also 
specify a current working directory: 

MSI "/USERS/MARK:CS80,700,1" 
or 

MSI "/USERS/MARK: ,700,1" 
or 

MSI "/USERS/MARK" If the default volume is ":,700,1" 

5-6 U 5ing Directorie"" and Files 



Creating and Using Hierarchical Directories 
Directories contain information about files on a volume. If you are on a hierarchical­
directory volume (such as HFS or SRM), directories also have additional capabilities. 
This section shows how to create and access hierarchical directories. 

Exampie Hierarchy 
Examples in the following paragraphs refer to the directory structure shown III the 
illustration below. 

(root) 

assignments assignments 

schedule schedule 

budget budget 

The boxed names signify directories, while the unenclosed names signify files. 

Changing the Default Volume 
First, it will be helpful to change the default volume to the "root" directory of your 
hierarchical volume by executing something like this: 

MSI ": .700" or 
MS I ":. 21 . 0" 

You do not need to specify a "I", since the directory path is assumed to begin at the 
root directory when the volume specifier is included. 

U sing Directories and Files 5-7 



Adding Another Directory 
This statement creates a directory named CHARLIE in this directory structure: 

CREATE DIR "/PROJECTS/Project_one/CHARLIE" 

The leading slash indicates that the directory path begins at the root of the hierarchical 
directory structure. Each subordinate directory is listed from left to right, separated by 
slashes (PROJECTS/Proj ect_one/). The directory being created is listed after the directory 
path (CHARLIE). 

You could accomplish the same results with the following statements: 

MSI "/PROJECTS/Project_one" 

CREATE DIR "CHARLIE" 

Note that in both of the preceding examples, the leading "/" was unnecessary since the 
current working directory was already the root directory. 

This statement would place your newly created directory into the directory structure as 
shown below. 

I 

IKRTHY\ 

~ 
! 

I PROJECTS I 
t 

I 

I CHRRLIEI 

Creating Files and Other Directories Under a Directory 

(root) 

IGenerall 

To create files subordinate to a new directory~ you may either establish the new directory 
as the working directory or specify the directory path to that directory. Assuming your 
current working directory is the root, you could type: 

MSI "PROJECTS/Project_one/CHARLIE" 

to move into the directory CHARLIE. 

5-8 



You could verify the new working directory with a catalog listing by typing: 

CAT 

On a computer whose screen supports an 80-character line width, the resulting listing 
would look something like this (this example is from an SRM): 

PROJECTS/Project_one/CHARLIE:CS80. 700. O. 0 
LABEL: Disci 
FORMAT: SDF 
AVAILABLE SPACE: 54096 

SYS FILE NUMBER RECORD MODIFIED PUB OPEN 
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT 
================= === ==== ===== ======== ======== ============ === ==== 

To create an ASCII file within CHARLIE, which is named ASCILl and is initially to contain 
100 records, execute this statement: 

CREATE ASCII "ASCII_l".lOO 

To create a BDAT file within CHARLIE, which is named BDAT_l and is initially to contain 
25 records, execute this statement: 

CREATE BOAT "BDAT_l".25 

(When no record size is specified in the CREATE BDAT statement, the default 256-byte 
record size is assumed.) 

To create another directory within CHARLIE called MEMOS, execute this statement: 

CREATE DIR "MEMOS" 

U sing Directories and Files 5-9 



The additions would make the directory structure look like this: 

I PRO;[CTS I 
- - ~- ~ ~- ~-- --~---~--- ~-~~ -------,----~----- ~-, 

(root) 

IGen~Call 

a--EJ----~ 

~-~ -1 
~ ~ RSCII_l 

L- BDHT 1 

The simplest form of the CAT statement: 

CAT 

lists the contents of the current working directory because no directory is specifically 
identified. If no directory name is shown in the directory header, the current working 
directory is the root. 

If you wanted to list the contents of CHARLIE, but your current working directory was not 
CHARLIE, you could: 

• Designate CHARLIE as the working directory with the MSI statement, then use the 
CAT statement's "short form." For example: 

MSI IIPROJECTS/Proj ect_one/CHARLIE: REMOTE II (for an SRM disc) 
or 

MSI IIPROJECTS/Proj ect_one/CHARLIE: .700 11 (for an HFS disc) 

CAT 

5-10 Using Directories and Files 



• In the CAT statement, specify the entire path to CHARLIE, starting at the root, by 
beginning the path name with a slash ( / ). For example: 

CAT "/PROJECTS/Project_one/CHARLIE" 

This form assumes that you have already designated remote mass storage with some 
form of the MSI statement. If you have not, use the form: 

CAT "PROJECTS/Project_one/CHARLIE:REMOTE" for an SRM disc 
or 

CAT "PROJECTS/Project_one/CHARLIE:. 700" for an HFS disc 

In the first example, the leading slash is not necessary, because including :REMOTE 

specifies the root as the beginning of the path. In the second example, the ": . 700" 

is the volume specifier for the HFS disc. 

• If you were in MEMOS (the directory immediately subordinate to CHARLIE), you could 
use the" .. " notation (explained with directory path syntax in the BASIC Language 
Reference manual). For example: 

CAT" .. " 

A Closer Look at Hierarchical Directory Capabilities 
Directories are a type of file and, as such, can be: 

• created with the CREATE DIR statement. When a directory is created, its location 
in the hierarchical structure is fixed. 

• cataloged with the CAT statement, renamed with the RENAME statement, and 
protected with the PROTECT (SRM only) statement. 

• "filled" with subordinate files and directories using the COPY, CREATE, CREATE 
BDAT, CREATE ASCII, CREATE DIR, SAVE, STORE, RENAME, RE-SAVE, 
and RE-STORE statements. Each subordinate file or directory is described in a 
fixed-format record in its superior directory. 

• opened and closed with the MASS STORAGE IS (MSI) statement. When a user's 
MSI statement specifies a directory, any previously opened directory of that user is 
closed and the new one is opened. 

• "emptied" by removing all subordinate files and directories with the PURGE 
statement. 

• purged with the PURGE statement. You must close and empty a directory before 
purging it. 

Using Directories and Files 5-11 



How SRM and HFS Directories and Files Are Stored 
To most efficiently use disc space, the SRM system and HFS system store files non­
contiguously and add space allocations to files as needed. 

Non-Contiguous Storage of SRM and HFS Files 
To avoid wasting disc space, SRM and HFS may "fragment" a file to fill unused disc 
sectors. This process is transparent and cannot be externally controlled. By "filling the 
gaps" automatically, the system eliminates the need to pack the shared disc's files. 

Space Allocation for SRM and HFS Directories and Files 
SRM and HFS files and directories grow dynamically as data is entered into them. 
This type of file is called extensible, because its size may be automatically extended 
(by BASIC) whenever it would otherwise overflow. (For SRM, the amount of space 
added to the file~s current size is known as the "extent size" of the file; this amount of 
space is the same as the amount of space that was originally allocated to the file when 
it was initially created.) 

Rather than restricting a file's space to that allocated when the file is created (for 
example, with a CREATE statement), the system determines disc space requirements 
when data is sent to the file (for example, by an OUTPUT statement). If additional 
data placed into a file would cause the file to overflow its current space allocation, the 
system automatically allocates more space for the file. 

Similarly, directories grow only as entries are added. As a file or directory is created, 
another record is added to the containing directory. 

Files are extended as long as there is sufficient unused disc space on the same volume. 
Excess data from a file will not be placed on any other volume, however. 

5-12 Using Directorie~ CLuJ File~ 



A Closer Look at File Catalogs 
There are three types of directory structures available with BASIC. (For further infor­
mation about each of these directory formats, see the "Mass Storage Concepts" chapter.) 

• LIF (Logical Interchange Format )-an HP corporate standard used by many HP 
operating systems; allows discs and files to be transportable between many different 
types of computer systems. 

• HFS (Hierarchical File System)-also provides a format used by several operating 
systems, most notably the HP Series 200/300 HP-UX and Workstation Pascal 
systems. Like LIF, it also allows transporting discs and files between operating 
systems; however, it also provides a hierarchical directory structure, which LIF 
does not. 

• SDF (Structured Directory Format)-also a hierarchical directory format; however, 
with Series 200/300 computers, it is available only with SRM "file server" systems. 

BASIC displays slightly different results for each type of directory structure. 

U sing Directories and Files 5-13 



LlF Catalogs 
Here is a typical catalog listing of a LIF directory (note for displays with 80 columns or 
more, there are two extra fields: DATE and TIME when the file was last modified): 

:CS80.700 
VOLUME LABEL: B9836 
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS 

MyProg PROG 14 256 16 
VisiComp ASCII 29 256 30 
GRAPH BIN 171 256 59 
GRAPHX BIN 108 256 230 

Here is what pach portion of the catalog means: 

:CS80.700 

VOLUME LABEL 

FILE NAME 

PRO 

TYPE 

REC/FILE 

BYTE/REC 

ADDRESS 

DATE 

TIME 

is the mass storage volume specifier (msvs) of the device. 

is the "name" given to the volume (in this case, it is B9836). 

lists the names of the files in the directory (limit 10 characters). 

indicates whether the file has a protect code (* is listed in this column 
if the file has a protect code). 

lists the type of each file. 

indicates the number of records (or sectors) in the file. 

indicates the record size. 

indicates the number of the beginning sector in the file. 

date when file was last modified (for displays with 80 or more columns) 

time when file was last modified (for displays with 80 or more columns) 

5-14 Using Directories and Files 



HFS Catalogs 
Here is a typical catalog listing of an HFS directory: 

r : esso , 700 
LABEL: MyVol 
1:'nDl' A.,.. Ul':'rt run!'!".L. nr';) 

AVAILABLE SPACE: 60168 
FILE NUM REC MODIFIED 

FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP 

lost+found DIR 0 32 19-Nov-86 10:47 RWXRWXRWX 18 9 
FILEIOD PROG 191 256 21-Nov-86 9:03 RW-RW-RW- 18 9 
RBDAT BDAT 2 256 21-Nov-86 9:10 RW-RW-RW- 18 9 
CATTOSTR PROG 2 256 1-Dee-86 8:02 RW-RW-RW- 18 9 

Here is what each column means: 

FILE NAME 

FILE 
TYPE 

NUM 
RECS 

REC 
LEN 

MODIFIED 
DATE TIME 

Lists the name of the file (limit 14 characters). 

Lists the file's type (for instance, DIR specifies that the file is a 
directory; PROG specifies a BASIC program file; BDAT specifies a 
BASIC data file; etc.). 

number of logz"cal records (the number of records allocated to the file). 

the logz"cal record size (default is 256 bytes for all files except HP-UX; 
BDAT files have user-selectable record lengths; record length for HP­
UX files is 1). 

the day and time when the file was last modified. 

U sing Directories and Files 5-15 



PERMISSION specifies who has access rights to the file: 

R indicates that the file can be read; 
W indicates that the file can be written; 
X indicates that the file can be searched 

(meaningful for hierarchical directories only). 

There are 3 classes of user permissions for each file: 

OWNER (left-most 3 characters); 
GROUP (center 3 character~); 
OTHER (right-most 3 characters). 

See the subsequent section called "HFS File and Directory Permissions" 
for further information). 

OWNER specifies the owner identifier for the file (for BASIC files, the default 
owner identifier is always 18). 

GROUP specifies the group identifier of the file or directory (for BASIC, the 
default group identifier is always 9, which is used for "workstations" 
such as Series 200/300 BASIC and Pascal). 

5-16 U sing Directories and Files 



SRM Catalogs 
Here is a typical catalog listing of an SRM directory: 

PROJECTS/Project_one/CHARLIE:REMOTE 21. 0 
LABEL: Disc1 
FORMAT: SDF 
AVAILABLE SPACE: 54096 

SYS FILE NUMBER RECORD MODIFIED PUB OPEN 
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT 

ASCII_1 
BDAT_1 
MEMOS 

1 ASCII 
1 98X6 BDAT 
1 DIR 

1 
1 
1 

256 2-Dec-84 13:20 
256 2-Dec-84 13:20 R 

24 2-Dec-84 13:20 RW 

Here is what the various columns mean: 

FILE NAME 

LEV 

SYS 
TYPE 

FILE 
TYPE 

NUMBER 
RECORDS 

RECORD 
LENGTH 

MODIFIED 
DATE 

PUB 
ACC 

OPEN 
STAT 

TIME 

is the name of the file (up to 16 characters) 

is always 1 (for BASIC). 

indicates the type of system used to create the file. This is blank for 
ASCII files and directories. 98x6 denotes a Series 200/300 computer. 

indicates the file type (such as PROG, ASCII, BDAT, etc.) 

is the number of records in the file. 

is the record length used in the file (file size is the product of 
RECORDSxLENGTH). 

Date and time of day when the file was last written or modified. 

shows which access rights are currently public. For instance, MR would 
indicate that Manager and Read capabilities are public, while other 
rights are protected (and require a password to access them). See the 
subsequent section called "SRM Passwords" for details. 

is the current OPEN/CLOSED/LOCKED status of the file. 
• OPEN means that someone currently has the file open. 
• LOCKED means that the file is opened in "EXCLUSIVE" 

mode, and no one else may access the file. 
• if blank, no one is currently using the file. 

U sing Directories and Files 5-17 



Listing Only File Names (Requires MS Binary) 
The following statement will produce a multi-column listing of the names of the files in 
the current working directory of the current default volume. 

CAT; NAMES I Return I 

lost+found 
MY_PROG 

WORKSTATIONS 
DATA_13 

SYSTEM_BA5 
PROJECTS 

Cataloging Selected Files (Requires MS Binary) 
You can also specify which files to list with some of the following options to the CAT 
statement: 

CAT; SELECT "ABC" 

CAT; SKIP 30 

CAT; COUNT Num_files 

CAT; NO HEADER 

CAT; NO HEADER. SKIP 10 

Lists only the files beginning with the specified letters 
"ABC". 

Skips the first 30 files in the directory and lists only the 
remaining files. 

Stores the number of lines in the catalog in the numeric 
variable called Num_files. (Note that this variable must 
be defined in the current program or subprogram context 
before it can be used.) 

Suppresses the catalog heading. 

Suppresses the catalog heading and skips the first 10 files 
in the directory. 

See the BASIC Language Reference for a complete description of these options. 

5-18 U sing Directories and Filps 



Cataloging to a String Array (Requires MS Binary) 
You can also send a catalog to a string array, as shown in the following example program 
segment: 

170 DIM Str_array$(l:40) [80] 
180 CAT TO Str_array$(*) 
190 

40 lines of 80 columns each. 
Send catalog to string. 

See the "Data Storage and Retrieval" chapter of BASIC Programming Technz'ques for 
further information on catalogs sent to string arrays. 

Cataloging Individual PROG Files (Requires MS Binary) 
Performing CAT operations on an individual PROG file returns additional information 
about the file. A catalog of a PROG files yields the following information: 

• A list of the binary program ( s) contained in the program file and the size of each 
(in bytes) 

• The size of the main program (in bytes). 

• A list of contexts (SUB and FN subprograms) and their sizes (in bytes) 

Using Directories and Files 5-19 



The following catalog listing is an example of a CAT performed on an individual PROG 
file. Note that this catalog format only requires 45 columns. 

NEWPAGER_A 
NAME 

MAIN 
FNBar$ 
FNRoman$ 
Killkeys 
FNTrim$ 
FNUpc$ 
FNLwc$ 
Table_formatter 
Strip 

AVAILABLE ENTRIES = 0 

SIZE TYPE 

62002 BASIC 
3680 BASIC 

656 BASIC 
426 BASIC 
414 BASIC 
344 BASIC 
416 BASIC 

6810 BASIC 
1260 BASIC 

The AVAILABLE ENTRIES table entry is not currently used. 

The following listing shows a program which was stored while a BIN program was resident 
in the computer. 

NEWPAGER_B 
NAME SIZE TYPE 

PHYREC (2.0) Rev A 1734 BASIC BINARY 
*** WARNING: System level 5. Bin level 1. 
MAIN 56394 BASIC 
FNBar$ 3218 BASIC 
FNRoman$ 
Killkeys 
FNTrim$ 
FNUpc$ 
FNLwc$ 
Table_formatter 

AVAILABLE ENTRIES = 0 

656 BASIC 
426 BASIC 
414 BASIC 
344 BASIC 
374 BASIC 

7622 BASIC 

In addition. if the currently loaded BASIC system version is different from the binary 
program version. a warning and the version codes of both BASIC' system and binary 
program are included in the catalog information. The following example shows the 
format of the message returned. 

Prog_phy 
NAME SIZE TYPE 

PHYREC 1.0 1734 BASIC BINARY 
*** WARNING: System level 5. Bin level 1. 
MAIN 222 BASIC 

AVAILABLE ENTRIES = 0 

5-20 Using Directories and Files 



General File Management Operations 
This section describes the mechanics of managing files in your system. These may be 
program files, data files that your application creates, or data files that you create from 
the keyboard. 

Closed vs. Open Files and Hierarchical Directories 
Many of the following operations can only be performed on closed files and directories. 
Here is what the term "closed" means for files and directories: 

• Files are open when there is an 

ASSIGN ClIo_path TO "file_ name" 

currently active for the file. 

Files are closed by this statement: 

ASSIGN ClIo_path TO * 
• Directories are closed when they are not the current working directory. A directory 

is the current working directory when you have made it the MASS STORAGE IS 
directory: 

MASS STORAGE IS "/USERS/MARK/MY_DIR" 

The SCRATCH A command also closes any currently open directories and files. All files 
except those opened with the PRINTER IS statement are also closed by pressing I Reset I 
(I Shift H Break Ion an ITF keyboard or I SHIFT H PAUSE I on a 98203 keyboard). 

See the BASIC Language Reference description of these statements for details. 

Protecting Files 
You can "protect" files from being read, over-written, or destroyed by other users of the 
system. Since protecting files is slightly different for each of the three directory types, 
the discussion is split into three parts. 

Using Directories and Files 5-21 



LlF Protect Codes 
With LIF directories, protect codes are two-character strings that can be assigned to 
any BDAT, BIN, or PROG file with the PROTECT statement. The protect code, which 
does not appear in the CAT display, must be specified to subsequently modify the file. 
Protect codes are intended to prevent accidentally writing and purging files. 

For example, to protect the file "SECRET" with the protect code "BS", use the 
statement: 

PROTECT "SECRET" ,"BS" 

The protect code must subsequently be specified with the file name to allow access. For 
example, to RENAME the previously protected file "SECRET", the statement is: 

RENAME "SECRET<BS>" TO "SHHHH" 

File specifiers in mass storage statements that write to a file or directory must include 
the protect code, if the file has one. Mass storage statements that read a file or directory 
do not require the protect code (e.g., CAT, LOAD, LOAD BIN, LOADSUB, GET, and 
COPY). 

To assign an I/O path name to the file named "SHHHH," you would now have to include 
the protect code. 

ASSIGl~ COPatIIl TO !!SHHHH<BS>!! 

If you assign a protect code longer than two characters, the system will ignore everything 
after the second (non-blank) character. For example, the protect codes LONGPASS, 
LOST, and LOLLYGAG all result in the same protect code: LO. This rule holds both 
for PROTECTing a file and for specifying the protect code in a file specifier. For instance: 

PROTECT "FILE1","Protectl" 

would assign the protect code "Pr" to FILEl. To rename the file, we could write: 

RENAME "FILE1<Prattle>" TO "FILE2" 

5=22 Using Directories and Files 



"Prattle" is an acceptable protect code, since it starts with "Pr." Note that we do not 
include a protect code in the new file name. If you do, the system ignores it since the 
old protect code is passed to the new file name. FILE2 still has the protect code "Pr". 
To rename the file again, we might write: 

RENAME "FILE2<Pr>" TO "FILE3" 

Renaming a file has the effect of changing the file name in the directory and leaving 
everything else intact. 

In addition to using the PROTECT statement, you can also assign a protect code to a 
BDAT file when you create it. For example: 

CREATE BOAT "Example<xx>",10 

The statement creates a IO-record file called "Example" and gives it a protect code of 
"xx". You can also do this to PROG files with the STORE statement. Since ASCII files 
cannot be protected, a protect code cannot be included in any CREATE ASCII, SAVE, 
or RE-SAVE statement. 

To change a protect code, simply execute a new PROTECT statement. To change the 
protect code of "Example" to "yy," execute: 

PROTECT "Example<xx>","yy" 

Note that you must include the current protect code in the file specifier. 

To completely remove a protect code from a file, PROTECT the file with a code consisting 
of two blanks. For example, to remove the protect code from file "Example," execute: 

PROTECT "Example<yy>"," 

When specifying a file that does not have a protect code, you can either ignore the code 
entirely or include a code of two spaces: 

PURGE "Example" 
or 

PURGE "Example< >" 

U sing Directories and Files 5-23 



HFS File and Directory Access Permissions 
For HFS directories, you can use the PERMIT statement to assign and remove access 
permissions of a file or directory. Since this file system is compatible with the HP-UX 
system, BASIC uses a subset of the HP-UX file protection mechanism. (With HP-UX, 
the chmod command performs this function.) 

There are 9 "permission bits" for HFS files and directories, broken into three classes (one 
for each class of users): 

OWNER GROUP OTHER 

READ WRITE SEARCH READ WRITE SEARCH READ WRITE SEARCH 

The three classes of users are: 

• OWNER-initially the person who created the file; however, ownership of indi­
vidual files and directories can be changed with the CHOWN l statement. With 
BASIC, the system "owns" all files and directories with an owner identifier of 18. 

• GROUP-initially the "group" to which the file'sjdirectory's "owner" belongs; 
however, the group identifier of individual files and directories can be changed 
with the CHGRp l statement. With BASIC, the system is in the "group" with an 
identifier of 9, which is also the default group identifier used by the Workstation 
Pascal system. 

• OTHER-all other users who are not the owner and are not in the same group as 
the owner-that is, everyone else. 

1 CHOWN and CHGRP are used only when you will also be using a disc with the HP-UX system. They 
give selected HP-UX users ownership or group access to files and directories. See the BASIC Language 
Reference entries for CHOWN and CHGRP for further information. 

5-24 IT sing Directories and Files 



Each class of users has three types of permissions for accessing an HFS file or directory: 

• READ-allows reading a file or directory (such as with CAT, ENTER, and GET). 

• WRITE-allows a user to modify a file's or directory's contents (such as with 
OUTPUT, RE-STORE, or CREATE). 

• SEARCH-an operation on directories which allows you to "search" the directory 
(such as with CAT and MASS STORAGE IS). This permission has no meaning for 
files (that are not directories) on BASIC. 

The current state of these bits are shown in the PERMISSION column of a CAT listing of 
the directory in which the file or directory resides (R for READ; W for WRITE; X for 
SEARCH; - for "no permission"): 

FILE NUM REC MODIFIED 
FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP 
============== ===== ====== ===== =============== ========== ===== ===== 
Directory 
File 

DIR 256 
HPUX 8192 

1 7-Nov-86 9:22 RWXRWXRWX 
1 7-Nov-86 9:23 RW-RW-RW-

The default permission bits for directories are: RWXRWXRWX. 
The default permission bits for files are: RW-RW-RW-. 

18 
18 

9 
9 

The PERMIT statement is used to permit or restrict access of files and directories 
by other users on a system. For more information about user categories and how to 
change permissions on a file or directory, see the BASIC Language Reference: PERMIT 
statement. 

The following example sets READ and WRITE permission for OWNER, but removes 
permission for SEARCH: 

PERMIT "File"; OWNER:READ.WRITE 

Before After 

RW-------

With these permission bits set, the owner of the file can read and write the file (with 
GET and RE-STORE, for example), but all other users on the system cannot access the 
file. 

Using Directories and Files 5-25 



The following example sets READ and WRITE permission for OWNER, but removes 
permission for SEARCH (note that the PERMIT parameters are the same as in the 
preceding example, but the "before" permission bits are different): 

PERMIT "File"; oWNER:READ.WRITE 

Before After 

R-XRW-RW- RW-RW-RW-

With thcsc pcrmis8ion bits sct, all dasscs of llsprs can rcao ann writc thc filc. 

If a user class is not specified (OWNER, GROUP, or OTHER), the corresponding access­
permission bits are not affected. For instance, the following statement sets the permission 
bits for OWNER and OTHER but lcavcs thc bits for GROUP unchanged: 

PERMIT "File"; oWNER:READ.WRITE; oTHER:READ 

Before After 

R--R---W- RW-R--R--

The next example changes bits for GROUP and OTHER but leaves the bits for OWNER 
unchanged: 

PERMIT "File"; GROUP: READ; oTHER:READ 

Before After 

RW-RW-RW- RW-R--R--

If no user class is specified, the default permissions for all groups are restored: 

PERMIT "File" 

Before After 

RW-R--R-- RW-RW-RW-

PERMIT "Directory" 

Before After 

RW-R--R-- RWXRWXRWX 

5-26 Using Directories and Files 



SRM Passwords and Locks 
The SRM system offers three kinds of access capability for files and directories: 

READ 

WRITE 

MANAGER 

For a file, possessing this access capability allows you to execute state­
ments that read the file (such as GET, ASSIGN, ENTER, etc.). 

For a directory, possessing this access capability allows you to execute 
statements that read the file names in the directory, and to "pass 
through" the directory when the directory's name is included in a 
directory path. For example, in the SRM file specifier: 

I/PROJECTS/Project_one<READpass>/JOHN/fl" 

including the assigned password <READpass> allows passage through the 
directory Proj ect_one to allow access to its subordinate directories and 
files. 

For a file, possessing this access capability permits you to execute 
statements that write to the file (such as SAVE, OUTPUT, etc.). 

For a directory, possessing this access capability allows you to execute 
statements that add to or delete from the directory's contents (such as 
CREATE ASCII, CREATE DIR, PURGE, etc.). 

With the MANAGER access capability, public capabilities for a file or 
directory differ slightly from password-protected capabilities . 

• Public MANAGER capability allows any SRM user to PROTECT, 
PURGE, or RENAME the file . 

• The password-protected MANAGER capability provides MANAGER, 
READ, and WRITE access capabilities to users who include 
a valid password in the file or directory specifier. 

Capabilities are either public (available to all workstations on the SRM) or protected 
(available only to users who know the appropriate password). 

U sing Directories and Files 5-27 



The current access capabilities for a file are shown in a catalog listing: 

PROJECTS/Project_one:REMOTE 21, 0 
LABEL: Disc1 
FORMAT: SDF 
AVAILABLE SPACE: 

FILE NAME 

ASCII_1 
BDAT_1 
MEMOS 

4354096 
SYS FILE 

LEV TYPE TYPE 

ASCII 
1 98X6 BOAT 
1 DIR 

NUMBER 
RECORDS 

======== 
0 
0 
0 

RECORD MODIFIED PUB 
LENGTH DATE TIME ACC 

======== =============== 
256 2-Dec-84 13:20 
256 2-Dec-84 13:20 R 

24 2-Dec-84 13:20 RW 

OPEN 
STAT 

In the above example, the file ASCII_1 has no public access capabilities; that is, all access 
must include the appropriate password. The file BDAT_1 has the READ capability public, 
which means that anyone on the SRM system can read the file. The directory MEMOS has 
READ and WRITE capabilities still open to the public; anyone can create and purge 
files in the directory, as well as "search" through the directory (with statements like MASS 
STORAGE IS "MEMOS/SUB_DIR"). 

Capabilities are protected with the PROTECT statement, which associates a password 
with one or more access capabilities. Each file or directory can have several pass­
word/capability pairs assigned to it. 

Once assigned. the password protecting an access capability must be included with the 
file or directory specifier to execute statements requiring that access. If you don It specify 
the correct password when it is required, the system will report an error and deny access 
to the file or directory. 

5-28 Using Directories and Files 



When you create directories and files, their access capabilities are "public" (available to 
any user on the SRM). You may subsequently protect a directory or file against certain 
types of access by other SRM workstations, provided all of the following are true: 

• You possess MANAGER access capability on the file or directory (MANAGER 
access to the file is public or you know the password protecting the capability). 

• You possess READ access capability on the directory immediately superior to the 
file or directory you wish to protect. 

• You protect the file or directory either while "in" its superior directory or by 
specifying the valid directory path to its superior directory. 

For example, using the directory structure established for other examples in this section 
(see illustration) and assuming no passwords have been assigned to the files, you could: 

(root) 

BDRT 1 

1. Assign the password passme to protect the MANAGER and WRITE access capa­
bilities on the directory CHARLIE with the sequence: 

MSI "/PROJECTS/Project_one" 

PROTECT "CHARLIE". ("passme":MANAGER.WRITE) 

which executes the PROTECT statement after moving to the directory Proj ect_one 
(immediately superior to CHARLIE). As a result of this PROTECT statement, the 
READ access capability on CHARLIE is still public, but any operations that require 
MANAGER or WRITE capabilities must include the password. 

U sing Directories and Files 5-29 



2. Remove all public access capabilities from the file ASCII_1 by assigning the password 
no_pub, using: 

PROTECT "CHARLIE/ASCIL1" , ("no_pub":MANAGER,WRITE,READ) 

or 

MSI "CHARLIE" 
PROTECT "ASCII_1",("no_pub":MANAGER,WRITE,READ) 

These statements assume you are in the directory Proj ect_one. The second sequence 
of statements makes CHARLIE the new working directory. whereas in the first. you 
merely "pass through" CHARLIE to reach ASCII_1. vVith the READ access capability 
on CHARLIE still public, you do not need a password. 

3. Protect the file BDAT_l so data can be read from it but not written into it without 
using the password write. If th(' current working directory wer(' CHARLIE. you would 
type: 

PROTECT "BDAT_1", ("write" : MANAGER ,WRITE) 

4. Protect the MANAGER access capability of the directory MEMOS with the password, 
mgr _pass (so that everyone can read from and write to the directory, but a password 
is required to purge the directory or its contents) by typing: 

PROTECT "MEMOS", ("mgr_pass":MANAGER) 

If you protected the files and directory in CHARLIE as in the steps above, a catalog listing 
of CHARLIE would look something like this: 

PROJECTS/Project_one/CHARLIE:REMOTE 21, 0 
LABEL: Disc1 
FORMAT: SDF 
AVAILABLE SPACE: 54096 

SYS FILE NUMBER RECORD MODIFIED PUB OPEN 
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT 

ASCII_1 
BDAT_1 
MEMOS 

1 ASCII 
1 98X6 BDAT 
1 DIR 

6 
4 
o 

256 2-Dec-84 13:20 
256 2-Dec-84 13:20 R 

24 2-Dec-84 13:20 RW 

The letters in the column labeled PUB ACC indicate access capabilities that are public (not 
protected with a password). For example, only the MANAGER (M) access capability on 
the directory MEMOS has been protected~ leaving the READ (R) and WRITE (w) capabilities 
available to any SRM workstation user. 

5-30 TJ sing Din'rtories and File~ 



Specifying Passwords 
When a password is required, you must include the correct password as part of the file 
or directory specifier in any command or statement that requires the protected access on 
the file or directory. The password must be enclosed between "<" and ">" and must 
immediately follow the name of the file or directory it protects. 

For example, to get the file ASCII_l, you might execute: 

GET "/PROJECTS/Project_one/CHARLIE/ASCII_l<no_pub>" 

If the password were not included in the specifier, the system would respond with an 
error message and refuse to get the file. 

Exclusive Access: Locking SRM Files 
Although sharing SRM files saves disc space, allowing several users access to one copy 
of a file introduces the danger of users trying to access the file at the same time, which 
can cause unpredictable results. For instance, if one user tries to read part of a file while 
another user is writing to it, the file's contents may be inaccurate for the read. 

To avoid problems, the SRM system adds two BASIC keywords, LOCK and UNLOCK, 
which you can use to secure files during critical operations. LOCK establishes exclusive 
access to a file, which means that the file can only be accessed from the workstation at 
which the LOCK was executed. You may wish to LOCK a file, for example, during any 
procedure that writes new information to the file. The typical procedure is to LOCK all 
critical files, read data from files, update the date, write the data into the files, and then 
UNLOCK all critical files. 

To permit shared access to the file once again, UNLOCK must be executed from the 
same workstation, or the file must be closed. Only ASCII or BDAT files that have been 
opened by a user via ASSIGN may be locked explicitly by that user. 

Locking and unlocking is usually done from within a program. For more information, 
refer to the descriptions of the ASSIGN, LOCK and UNLOCK keywords in the BASIC 
Language Reference. 

Using Directories and Files 5-31 



Locking and Unlocking SRM Files 
You can "lock" an SRM file with the LOCK statement, giving you sole access to that file. 
The same file can be locked several times in succession. Unlocking a file requires that you 
cancel all locks on that file. If you use the UNLOCK statement, you must cancel each 
LOCK with a corresponding UNLOCK. Using ASSIGN to re-open a locked file unlocks 
the file and you must execute another LOCK statement to lock the file again. Closing 
the file via ASSIGN @ ... TO * cancels all locks on the file. 

In this example, a critical operation must be performed on the file named File_a, and 
you do not want other users accessing the file during that operation. The program might 
be as follows: 

1000 ASSIGN ~File TO "File_a:REMOTE" 
1010 LOCK ~File;CONDITIONAL Result_code 
1020 IF Result code THEN GOTO 1010 ! Try again 
1030 Begin critical process 

2000 End critical process 
2010 UNLOCK ~File 

The numeric variable called Result_code is used to determine the result of the LOCK 
operation. If the LOCK operation is successfuL the variable contains O. If the LOCK is 
not successful, the variable contains the numeric error code generated by attempting to 
lock the file. 

Copying Files and Volumes 
The COPY statement allows you to duplicate an individual file or an entire disc volume. 
Any type of fil£' may be copied. 

• Copying a file duplicates the existing file and places the new file name in the 
directory. 

COpy "ExistFile" TO "NewFile" 

A new file can be created either on the same volume or OIl another volume. If 
you copy a file to the same volume, the new file name must be different from the 
existing file name if it is in the same directory. If there is not enough room on the 
disc for the file to be copied, the system cancels the statement and reports an error. 

• Copying an entire volume makes an image copy of the source volume on the 
destination volume. This type of copy is allowed with LIF and HFS volumes. 

5-32 U sing Directories and Files 



Note: This type of copy destroys aU data on the destination disc. If you want to 
copy multiple files, you should use one of the "back-up" utilities described in the 
"BASIC Utilities" chapter of Installing and Maintaining the BASIC System. 

To perform this type of copy, simply identify the source and destination volumes. 

COpy ":,700" TO ":,702" 

Note: You can copy a larger volume to a smaller volume, if copying the files from the 
larger volume will not overflow the smaller one. However with HFS, copying a smaller 
volume to a larger volume will effectively change the size of the larger volume (making 
it the size of the smaller volume). 

More Examples 
The following statement copies "Filel" from the current default mass storage volume to 
a new file called "File2" on the same volume: 

COpy "Filel" TO "File2" 

The following statement copies "Filel" from the current default mass storage to a drive 
at interface select code 7, primary address 0, unit number 1. Note that both files can be 
named "Filel" if they are on different volumes. 

COpy "Filel" TO "Filel:,700,l" 

COpy can be used to copy files from volumes of one format to another. For instance, 
you can copy LIF files to HFS or SRM volumes, SRM files to HFS or LIF volumes, and 
so forth. 

Copying LIF Files 
The following statement copies a file from a CS80 drive to the current default mass 
storage device. 

COpy "Filel: ,700,0" TO "DATA" 

The following statement copies the entire disc from the right-hand drive to the left-hand 
drive of a dual-drive disc. 

COpy": ,700,1" TO ": ,700,0" 

You can copy an entire LIF volume in a single COpy statement. Make absolutely sure 
that you understand the consequences of this type of operation (destroys all previous 
data on the destination). 

U sing Directories and Files 5-33 



Copying HFS Files 
To copy an HFS file, you must have R (read) permission on the existing file and X (search) 
permission on all superior directories. You also need W (write) and X permissions on the 
destination directory into which the duplicate file is being copied, as well as X permission 
on all superior directories. 

You cannot copy directories, although you can copy files from one directory to another. 
You can copy an entire HFS volume in a single COpy statement (as with LIF, this 
operation destroys all previous data on the destination). 

Copying SRM Files 
To copy an SRM file, you must have R (read) permission on the existing file. You must 
also have W (write) permission on the directory into which the duplicate file is being 
copied. as well as R permission on all superior directories. 

You cannot copy directories, although you can copy files from one directory to another. 
You cannot copy an entire SRM volume in a single COpy statement. (You must copy 
an SRM volume file by file.) 

Renaming Files 
The name of a file can be changed without disturbing the file's contents. This is done 
with the RENAME statement. For example, to change the name of a file (on the default 
volume) from "George" to "Frank", use the following statement: 

RENAME "George" TO "Frank" 

Special Additional Action with SRM and HFS Volumes 
The RENAME statement can be used to chang(' the name of a file. optionally changing 
its location in the hierarchy: 

RENAME "/USERS/MARK/File22" TO "/USERS/MARK/OLD_FILES/File22" 

5-34 U sing Directories and Files 



Purging Files 
You can purge a file from a directory by using the PURGE statement. Purging a file 
deletes the directory entry for the file and releases the space reserved for the data area. 

A file entry can be removed from the disc directory with the PURGE statement. This 
prevents any further access to the file. For example, the following statement removes the 
file llOld_stuff" from the current default volume: 

PURGE "Old_stuff" 

Once a file is purged, there is generally no way of retrieving the information it contains l . 

Effects of PURGE on LlF Directories 
The order of file names and files' data areas is the same on LIF discs. Therefore, purging 
a file on a LIF directory creates two "gaps" on the disc: 

• One in the data area 

• One in the directory. 

As an example, suppose that you have three consecutive files on a disc with the following 
names and sizes. 

DIRECTORY 
ENTRY 

-~f-
FILE A r-

2 FILE B 
~-

1- -
-

3 FILE C .-
r-

I-
I-

4 

5 
I-

I-

I-

6 I-

DATA AREA 

FILE A 

FILE B 

FILE C 

-
-

-
-
-
-
-
-
-

-
-
-
-

} 3 SECTORS 

} 4 SECTORS 

} 5 SECTORS 

1 The only exception to this rule is with LIF discs, on which files can be "un-purged" using the Mass 
Storage Program (MASS_STOR). See the "Utilities" section of Installing and Maintaining the BASIC 
System for instructions. 

U sing Directories and Files 5-35 



LIF directory entries are in the same order as the files in the data area. The third 
directory entry, for example, must correspond to the third file in the data area. 
Consequently, if you PURGE a LIF file and then create a smaller file, you may lose 
disc space. The following examples illustrate this principle. 

Executing the following statement: 

PURGE "FileB" 

creates a I-entry gap in the directory and a 4-sector gap in the data area. 

DIRECTORY DATA AREA 
ENTRY 

~~ -FILE A FILE A 
~ -

~ -
~ -2 

~ -
FILE C 

~ -3 
~ 

FILE C -
f- -
r- -4 

5 r- -
i- -
r- -
~ -6 

When you create a file on a LIF volume, the system looks for the first gap in the data 
area with enough room to store the file. When it finds one, it puts the file into this gap. 
To continue the above example, suppose you create a 2-sector file with this statement: 

CREATE ASCII "FileD",2 

The system will place this file in the data-area gap and place the directory entry in the 
directory gap. 

5-36 Using Directories and File" 



DIRECTORY DATA AREA 
ENTRY 

2 

~ ______ FI_LE __ A ______ ~t _____ ------~~------_FI_LE--A------~3 
FILE D - FILE D j 

I- -
3 FILE C I- -

- FILE C -
- -

4 - -
- -

5 - -
I- -- -- -----....---... 

6 

...... - ---
You now have a 2-sector gap in the data area but no gaps in the directory. If you create 
another file, the system will fill entry 4 in the directory and will reserve space in the data 
area past FileC. The two unused sectors will not be reclaimed unless you PURGE one of 
the adjacent files, FileD or FileC. 

In this example, the 2 unused sectors were not a large problem. However, suppose that 
FileB was 800 sectors long, and FileD was 2 sectors. This scenario would result in 798 
sectors on the disc being unusable! 

The solution to this problem is to "REPACK" the disc using the "Mass Storage" 
(MASS_STaR) utility, available on the BASIC Utilities disc. See the "Utilities" section 
of Installing and Maintaining the BASIC System for instructions. 

Purging HFS Files and Directories 
The PURGE statement can be used for removing HFS files and directories. 
Here are the restrictions on using PURGE to remove HFS files: 

• In order to use PURGE, you must have write permission on the parent (superior) 
directory. 

• PURGE works only with closed files and directories. (You cannot PURGE a file 
currently open with ASSIGN or a directory which is the current working directory­
specified in the most recent MASS STORAGE IS statement.) 

• Directories must also be empty (not contain any files or directories). 

Using Directories and Files 5-37 



Purging SRM Files and Directories 
The PURGE statement can be used for rf'moving SRM files and directorif's. PUReE 
works only with closed files and directories. Directories must also be empty (not contain 
any files or directories). 

When specifying the SRM file to be purged. you must include a write password for the 
file and read/write passwords for its parent directory. For example. to purge the file 
BDAT_l from the directory CHARLIE (see previous examples). you could type: 

PURGE 1.<passme>/BDAT_l<write>" 

In this example, CHARLIE is the current working directory. as denoted in the directory 
path by " . ". (Refer to the syntax for directory path in the BASIC Language Reference 
manual). 

To purge a file, you must have the vVRITE access capability on that file and READ and 
WRITE access capabilities on the file's superior directory. Because passme protects the 
WRITE capability on CHARLIE and write protects the WRITE capability on BDAT_l, both 
passwords must be included in the file specifier in the PURGE statement. 

Although you do not normally need to specify the working directory in a directory path, 
you must include the password for the PURGE operation. The READ capability on 
CHARLIE is not password-protected. 

To purge CHARLIE, you would first need to purge the remaining files and directory in 
CHARLIE. Because the .MSI statement "opens" a directory (making it the current working 
directory), you must also "close" CHARLIE. 

For example, if no files or directories remained in CHARLIE, you could purge CHARLIE hy 
executing these two commands: 

MSI ":REMOTE" 
PURGE "PROJECTS/Project_one/CHARLIE<passme> 

The first statement closes CHARLIE and establishes the root directory as the current 
working directory. Note that. because passme protects the WRITE access capability 
on CHARLIE. you must include that password in the PURGE statement. 

5-38 Using Directories and Files 



Volume Labels (LIF and HFS Volumes Only) 
When you INITIALIZE a LIF disc, the BASIC system gives it a default "volume label"­
"B9836" or something similar-that is displayed with the CAT statement: 

: CS80 ,700 
-----> VOLUME LABEL: B9836 

FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS 

MyProg 
VisiComp 

PROG 
ASCII 

14 
29 

256 
256 

16 
30 

Volume labels are useful in cases when you want to identify a particular disc media, 
rather than a particular disc drive, for instance. (The example below shows this use.) 

Reading Volume Labels 
To determine the label on the media currently installed in a mass storage device, use the 
device's mass storage unit specifier: 

10 READ LABEL Label$ FROM ":,700,1" 

The statement puts the label into the string variable named Label$, which must be large 
enough to hold all of the characters in the label (volume labels are 6 characters or less). 

Here is an example that searches two drives for a disc with the volume label "MY_VOL": 

100 READ LABEL Vol_labelS FROM ":,700" ! Uni to. 
110 IF Vol_label$=IMY_VOL" THEN Msus$=": ,700" 
120 
130 READ LABEL Vol_labelS FROM ": ,700,1"! Unit 1. 
140 IF Vol_label$=IMY_VOL" THEN Msus$=": ,700,1" 
150 

U sing Directories and Files 5-39 



Writing Volume Labels 
To write the label "MY _ VOL'~ onto the current default volume, you could execute: 

PRINT LABEL "MY_VOL" 

To change the volume label on a different volume, you will need to specify the volume: 

PRINT LABEL "MY_VOL" TO ": ,700,1" 

Enabling Checkread Verification 
Normally, the BASIC system writes data into files and does not verify that the data was 
written without error. The reliability of mass storage devices is generally high enough to 
justify this. However, if you want the system to perform a read-after-write verification 
of data written into files, you can use this statement: 

CHECK READ ON 

Data subsequently written into all files by the following statements is subject to this 
verification: 

COPY PRINT LABEL RE-SAVE CREATE ASCII PROTECT STORE CREATE 
BDAT PURGE RE-STORE OUTPUT RENAME TRANSFER SAVE 

Note, however, that CHECKREAD does not affect files being written through the 
PRINTER IS or PLOTTER IS statements. For SRM systems, there is already a 
checkread operation performed automatically by the SRM controller; therefore, using 
the CHECKREAD statement has no effect with SRM. 

To disable this feature, execute: 

CHECKREAD OFF 

5-40 Using Directories and Filps 



What to Do Next 

Task/Topic Chapter /Section 

Learn how to load and run programs. "Loading and Running Programs" 

T .0<>1"n hAUT tA ont01" orl;t 1;:0£>111"0 rlA£>l1TYlOnt. "Rrlit;nO" <>nrl ~t{,\1";nO" P1"{'\O"r~TYlI;:" 
A-J"-''-At.&..&..&. .a. ... .....,,. .. "'''-' "' ........ ,,"' ..... , _'-4"''''', .................................. , ....... _ ...................... _ ......... , 

~~·~···o ~ .. ~ ~ ~~····o .. ~o· ~ .. ~ 
and store programs. 

Learn how to maintain your system. Maintaining BASIC section, Installing and 
Maintaining the BASIC System 

Learn how to use a BASIC utility program. "BASIC Utilities Library" 

Learn about each key on your keyboard. "Keyboard Reference" 

Using Directories and Files 5-41 



Notes 

5-42 IT sing Directories and Files 



,-
Where to Go ; 

Task/Topic for Details 

Entering and storing programs (overview) 6-1 
Terminology 6-1 

I Getting into EDIT mode 6-3 

C:orrecting typing mistakes 6-4 
I Storing thp line 6-4 
! 
I Entering program lines 

I 
6-4 

I Upper-cast:> or lower-ca."ie letters? 6-6 

Keys llst:>d for eOltmg the current line i 6-7 

Keys used for scrolling the program 

I 
6-9 

Inserting hnes 6-10 
I Dplf'ting ami rt:>calling lines 

I 
6-11 

i Copying lines (by changing line numbers) 6-12 

I Getting out of EDIT mode 6-12 

Listing the program 6-13 

Storing the program 6-13 

Running tIw program 6-13 

A closer look at editing 6-14 

Typing-aid soft key menu changes 6-15 
I IITF keyboards) 
I 

A closer look at listing a program 6-16 I 
I Global editing operations 6-18 
I ITlflpntincT <l nr("rr<l~Tl 6-19 I ~ .. ~"~ ... ~~~ ~ y' ~~. ~ ••• 

I FilHliI1g textua.l patterns 622 

Search-and-replace operations 6-24 

COVYlIlg prug!,aJ.ll begments 6-25 

Moving program segments 6-25 

Deleting multiple lines 6-26 

Making programs readable 6-27 

Software security 6-31 

A closer look at storing progra.ms 6-33 

Using STORE 6-34 

C:sing SAVE 6-34 

What to do next? 6-36 



Editing and Storing Programs 6 
In this chapter you will learn how to enter, edit, and store BASIC programs. 

Entering and Storing Programs (Overview) 
One of the great joys of using this BASIC system is that it makes entering, editing, 
and storing programs an extremely simple task. This section introduces you to some 
fundamental concepts and skills involved in entering and storing BASIC programs. 

Terminology 
keyword 

statement 

command 

a group of characters recognized by BASIC to represent some pre­
defined action. Examples are: 

CAT 
LOAD 
COPY 

a keyword followed by any parameters and/or secondary keywords 
that: 

• are required or allowed with that keyword 

• and fit on one program line1 

Examples are: 

CAT ":.700" 
LOAD IMyProg" 
COPY IMyProg" TO "BackupFile l 

a statement that is executed from the keyboard. 

1 The maximum length of a command or program line is two CRT lines (up to 256 characters. When 
entering commands and programs from the keyboard, this is 160 characters on most models, but only 
100 characters on the Model 226. (Program lines longer than 100 characters can be created on a 310, 
for instance, and then transferred to a 226 using a mass storage operation such as LOAD or GET. The 
resulting lines are valid program lines on the 226. However, when viewed on the CRT in EDIT mode, 
these lines have an asterisk after the line number, with only the first 100 characters visible.) 

Editing and Storing Programs 6-1 



program line a statement preceded by a line number (and optional line label) that is 
stored in a program. Examples are: 

100 CAT":. 700" 
250 COpy "MyProg" TO "BackupFile" 
875 Line_label: LOAD "MyProg" 

Statements as Commands vs. Program Lines 
In generaL a statement ran he useG as either: 

• A command-if the statement is executed from the keyboard; for example: 

PRINT "This is a keyboard command." I Return I 

• A program line if the statement contains a leading line number; for instance: 

100 PRINT "This is a program line." 

However, there are some statements that cannot be: 

• Executed as commands (such as DIM and RETURN) 

100 DIM String_var$[100] 

• Stored as program lines (such as DEL and SCRATCH) 

SCRATCH A 

The general case is that statements are both programmable and keyboard executable. 
such as CALL and PRINT. The BASIC Language Reference shows whether or not each 
keyword is keyboard executable or programmable~ or both. 

6-2 Editing and Storing Programs 



Getting into EDIT Mode 
When you want to edit program lines, you will need to get into EDIT model. If a 
program is not running2 , you can get into edit mode by typing: 

ED IT I Return I 

or by pressing the I EDIT I key followed by I ENTER I (HP 98203 keyboards oniy). 

You can also use the EDIT softkey ([[] in the User 1 menu of an ITF keyboard). 

The system goes into EDIT mode, and the screen has this format: 

I Previous Program Lines (if any) 

} Current Program Line (2 CRT lines) 

} System Message Line (if needed) 

} Following Program Lines (if any) 

} Softkey Labels 

The EDIT binary must be loaded in order to use EDIT mode. It is possible, however, to enter a program 
by typing program lines (line number and statement) on the normal keyboard input line of the CRT and 

pressing the I Return I key. But it is usually much more desirable to use EDIT mode where you can see 
several program lines at one time. 

2 See the "Introduction to the System" chapter for instructions on determining whether or not a program 
is running. 

Editing and Storing Programs 6-3 



In this mode, you can view a multi-line portion of the program. You can view different 
portions of the program by scrolling the display (see subsequent section called "Scrolling 
the Program" for details). If you want to edit a particular line, you must scroll the 
display so the line you want to edit is in the middle of the screen. 

If there is no program in memory when you enter EDIT mode. the cursor will appear on 
a line with the number 10, which is the default line number of the first program line. 

You can then begin to enter program lines; the following section explains how to do that. 

Note 

\Vhen you enter EDIT mode, the typing-aid soft key definitions 
and labels are changed to a User nWYlll, whos(' definitions are 
more useful for editing operations (need KBD binary). See the 
subsequent section called "A Closer Look at Editing" for further 
information. 

Correcting Typing Mistakes 
If you make any errors while typing, use the I Back space 1 or 0 and 0 keys to move the 
cursor to the erroneous character(s), and then re-type them correctly. 

Storing the Line 
Once the line is exactly as you want it, press I Return I. (The cursor may be any place on 
the line when you store it; the system will read the entire line, regardless of the location 
of the cursor.) 

Entering Program Lines 
To enter a program line. type the desired characters at the keyboard. For practice. type 
in the lines shown below (the line numbers to the left are supplied for you). 

10 PRINT "Tiny prog." I Return 1 

20 END I Return 1 

30 

6-4 Editing and ~toring Program" 



The BASIC System Checks Syntax 
Before storing a program line, the computer checks for syntax! errors, and also changes 
the letter-case of keywords and identifiers (see the following section, "upper-case or lower­
case Letters?" for details). 

Immediate syntax checking is one big advantage of writing programs on this BASIC 
system. A great many programming errors can be detected at program-entry time, 
which increases the chances of having a program run properly and cuts down debugging 
time. If the syntax of the line is correct, the line is stored, and the next line number 
appears in front of the cursor. 

If the system detects an error in the input line, it displays an error message immediately 
below the line and places the cursor at the location it blames for the error. 

10 PRINT "Short program. 

Error 985 Invalid quoted string 

20 END 

Keep in mind that there is an endless variety of human mistakes that migh~ occur, 
and that BASIC is not very good at dealing with even slight ambiguities. As a result, 
you might not always agree with its diagnosis of the exact error or the error's location. 
However, an error message definitely indicates that something needs to be fixed. There 
is a complete list of error messages and their meanings in the "Errors" appendix of the 
BASIC Language Reference and BASIC Condensed Reference manuals. 

1 Syntax is a term used to describe the way in which keywords, parameters, etc. are put together to form 
a legal statement. 

Editing and Storing Programs 6-5 



Upper-case or Lower-case Letters? 
Program entry is simplified by the computer's ability to recognize the upper-and lower­
case letter requirements for most elements in a statement. An entire statement can be 
typed using all upper-case or all lower-case letters. If the statement 1S syntax is correct 1 

and there are no "keyword conflicts" (see the explanation below), the system stores the 
program line. Upon LISTing or EDITing the program l , however, the system uses these 
conventions: 

• Keywords are all upper-case letters (CAT, LOAD, DISP, etc.) . 

• All variable name8 are listed with the first letter in upper-case and the rest of the 
letters, if any, in lower-case2 (Varl, String33$, etc.). 

In other words, you don't usually have to bother with the I Shift I key when you enter a 
line, becausf' the system will automatically change all letters to the proper letter-case. 
On the other hand, if there is a "keyword conflict," an error is reported. A keyword 
conflict occurs when you try to use a keyword for an identifier (variable name, line label, 
or subprogram name). You can use keywords for identifiers; simply change the letter­
case of at least one letter in the identifier name (for example, Cat or cAt), and then 
press I Return I again. A word containing a mixture of upper-case and lower-case letters is 
assumed to be an identifier. 

The system's assumptions about keywords versus identifiers won't cause any problems if 
your line has the proper syntax. However, if you are guessing at a keyword or syntax, 
don't assume that you got the line right just because the computer stored it. For instance, 
suppose that you are trying to type a PRINT statement to print a blank line; however, 
you misspell the keyword PRINT: 

100 PRINY 

The system does not report an error, because the line could legitimately be interpreted 
as a call to a subprogram named "Priny". 

Thus. in general. if the system puts lower-casf' If'tters in something you thought was a 
keyword, then it wasn't really recognized as a keyword. 

1 The EDIT binary must be loaded in order to edit and list programs. 
2 Accented characters (in the range CHR$(16) to CHR$(244)) remain as entered. These characters do not 

occur in keywords. 

6-6 



Keys Used for Editing the Current Line 
In order to edit a line, it must be the "current line" ~the line that the cursor is on. 
The next few paragraphs give a quick overview of the standard editing keys that you 
can use while editing the current line. (The "Keyboard Reference" chapter lists all key 
definitions for each type of keyboard.) 

Editing 
Feature Explanation 

Normal cursor Whenever you type characters at the keyboard, they appear on the current 
(blinking line at the cursor, overwriting any existing characters. 
underscore _) 

GJ, [8, and move the cursor one character in the indicated direction. If the cursor has 
I Back s~ace I reached either end of the line, it doesn't go any farther. Pressing I Shift 1[8 

moves the cursor to the end of the line, and I Shift I GJ moves the cursor to 
the beginning of the line. 

Knob or mouse also move the cursor. 

IINS CHR I or changes the cursor to the insert cursor (see below), and enters insert mode 
I I nsert char I (any characters typed are placed before the current cursor position, and 

the cursor and subsequent characters are shifted one position to the right). 
This key toggles between the normal cursor and the insert cursor. 

Insert cursor indicates that the character entered is inserted in front of the character 
(inverse~ video currently highlighted by the cursor. 
block, ;::::: ) 

DEL CHR I or deletes the character pointed to by the cursor. Subsequent characters on 
Delete char I the line are shifted one position to the left. 

CLR+END lor deletes all the characters from the cursor to the end of the current line. 
Clear line I 
CLR LN I or clears the entire current line. 

I Shift H Clear line I 

Editing and Storing Programs 6-7 



I SET TAB I and 
I CLR TAB I 

or 
[][] and 
I Shift ~[][] 
(System menu) 

I ANY CHAR I 
(I SHIFT H STEP I) 

or 

OIl 
(System menu) 

Softkeys 
CEQ] thru [E[) 

or 
[IT] thru [ill 
(in the User 1, 2, 
and 3 menus of 
ITF keyboards) 

Explanation 

I SET TAB I and I CLR TAB I perform the indicated action at the cursor posi­
tion. 

The I Tab I key moves the cursor to the next tah position. if thpff' is onp. 
I Shift H Tab I moves the cursor back to the previous tab position, if there is 
one. 

Characters that don't appear on the keycaps can be typed by using this 
key. Assumf' you arf' typing a program linf' and you want the vertical 
bar character (and it is not on your keyboard, for example). Press the 
I ANY CHAR I key. The following message appears below the current line: 

ENTER 3 DIGITS, 000 THRU 255 

For instance, the decimal ASCII code for a vertical bar is 124. Press the 
I 1 I 2 I 4 I number keys. A vertical bar appears at the cursor position, and 
the message goes away. If a key that is not part of a 3-digit number in the 
proper range is pressed during this operation, the ANY CHAR operation is 
aborted and the key performs its normal function. (By the way, the vertical 
bar character is available on the 98203 keyboard; press I SHIFT ~rn on the 
numeric keypad.) 

These keys produce characters and system-key presses, just as if you had 
typed them at the keyboard. See the "Using Typing-Aid Softkeys" section 
of the "Introduction to the BASIC System" chapter for details. 

6-8 Editing and Storing Programs 



Keys Used for Scrolling the Program 
All of EDIT mode's text-entry capabilities apply to the "current line" -the line in the 
middle of the screen with the cursor on it. That is, you must move a line to the current­
line position before you can edit it!. The text on the screen is scrolled so that you are 
always editing the line in a "window" in the middle of the screen. 

!!JOlting .n.ey EXplanatIOn 

m scrolls the program up one line, so that you will be 
editing the next program line. (Note that the cursor 
remains on the line in the middle of the screen.) 

[!] scrolls the program down one line, so that you will be 
editing the preceding program line. 

I Shift ~m scrolls the program all the way up, so that the end of the 
program is displayed and the next available line number 
is shown on the current line. 

I Shift ~[!] scrolls the program all the way down, so that the begin-
ning of the program is displayed and the first program 
line is the current line. 

Knob or mouse scroll the program. 

1 The only exception to this is when you enter a new line with the same line number as an existing line. 
In that case, the new line replaces the old, even though the old line was not moved to the current-line 
position. 

Editing and Storing Programs 6-9 



Inserting Lines 
Lines can be easily inserted into a program. As an example, assume that you want to 
insert some lines between line 90 and line 100 in your program. Place line 100 in the 
current-line position, and press the 1 Insert line 1 (I INS LN I) key. 

90 PRINT "Line 90." 
100 PRINT "Line 100." ··---Make this the current line, 

then press I I nsert line I. 

The program display "opens" and a new line number appears between line 90 and line 
100. 

90 PRINT "Line 90. " 
91 ----Begin typing; letters appear at cursor. 
100 PRINT "Line 100." 

Type and store the inserted lines in the normal manner. Appropriate line numbers will 
appear automatically. 

The insert mode can be canceled by pressing the 1 Insert line 1 (I INS LN I) key again, or by 
performing an operation that causes a new current line to appear (such as scrolling). 

While inserting lines, the system maintains the established interval between line numbers, 
if possible. 

• If the interval between lines in the preceding example was 5, the first line number 
appearing would be 95. 

• When the normal interval between lines can no longer be maintained, an interval 
of 1 is used. Thus, after line 95 is stored, the next line number supplied is 96. 

• When there are no line numbers available between the current line and the next 
line, enough of the program below the current line is renumbered to allow the insert 
operation to continue. In the example, this would happen after line 99 is stored. 
The original line 100 is renumbered to 101 and the number 100 appears in the 
current line. 

6-10 Editing and ~toring Program~ 



Deleting and Recalling Lines 
Lines can be deleted one at a time or in blocks. The I Delete line 1 (I DEL LN I) key deletes the 
current line, after which the lower part of the display is refreshed to "close" the space 
created by the deletion. 

Before deletion: 

90 PRINT "Line 90." 
100 PRINT "Line 100. " ... ---Make this the current line, 

then press I Delete line I. 
110 PRINT "Line 110." 

After deletion: 

90 PRINT "Line 90." 
110 PRINT "Line 110." ··---New "current line. " 

If you press the I Delete line 1 by mistake, you can recover the line by pressing I RECALL 1 ([][] 

in the System menu, or left-most unlabeled key above the numeric keypad, on an ITF 
keyboard), and then store it by pressing I Return I. The system has a recall buffer that 
holds the last lines entered, deleted, or executed. You can cycle through these lines, 
most recent to less recent, by repeatedly pressing the I RECALL 1 key. I Shift H RECALL 1 cycles 
through from the current line to the more recent lines. (You can also clear this recall 
buffer by executing SCRATCH R; this is useful, for instance, when you want to keep 
others from seeing passwords that you may have typed at the keyboard while accessing 
protected files.) 

When the keyword DEL is followed by a single line identifier, only a single line is deleted. 
The line identifier can be a line number or a line label. The I Delete line 1 key produces the 
same results, but has some advantages . 

• You can see the line before you delete it . 

• The I Delete line 1 key saves the line in the recall buffer (the DEL command does not). 

Therefore, DEL is more useful for deleting blocks of lines (described in the subsequent 
section called "Deleting Multiple Lines.") 

Editing and Storing Programs 6-11 



Copying Lines (By Changing Line Numbers) 
Although the computer supplies a line number automatically, you are not forced to use 
that number if you don't want to. To change the line number, simply back up the cursor 
and type in the line number you want to use. You can do this to existing lines as a way of 
copying them to another part of the program. (Note that there is an easier way to copy 
program lines by using the COPYLINES command as described in the next section.) 

When you change a line number and store the line, the program is automatically scrolled 
so that the line just stored is one line above the current-line position. In other words, 
when you copy a linr to a IlPW location. thf' IlPW location is displayed. 

Here are some points to keep in mind when changing the line numbers supplied by the 
system. 

• Changing the line number of an existing line causes a copy operation, not a move. 
The line still exists in its original location. 

• Existing lines are replaced by any line entered with their same line number. 

• Be careful that you don 't accidentally replace a line because of a typing mistake in 
the line number. 

Getting Out of EDIT Mode 
There are many ways to terminate the EDIT mode. Your choice depends upon what 
you want to do next. If you simply want to return the CRT to its "normal" mode 
(input line on the bottom and printout area above). press I PAUSE I (~) or I CLR SCR I 
(I Clear display I). Any of these keys terminates EDIT mode and returns the screen to the 
normal format. 

Another way to leave EDIT mode is to proceed with another operation. The most useful 
choices in this case are LIST, CAT, I RESET I, I RUN I (@J in the System or a User menu 
of ITF keyboards), or I STEP 1 ([]] in the System menu of ITF keyboards). EDIT mode 
is also terminated by a GET or LOAD operation, and by any operation that uses the 
display (like LIST and CAT). 

6-12 Editing and Storing Programs 



Listing the Program 
List the program by executing the following command! (which also gets you out of EDIT 
mode, if you have not already terminated it in one of the other ways described in the 
preceding section): 

LIST I Return I 

The system lists the program on the screen (or whichever device is the current PRINTER 
IS device). 

10 DISP "Short program." 
20 END 

Storing the Program 
You can store the above program, for instance, in the file named "MyProg" on the default 
volume by executing this statement: 

STORE "MyProg" I Return I 

You can also use the SAVE statement, which stores the line in an ASCII representation 
(rather than in an "internal" representation; see "A Closer Look at Storing Programs" 
for details.) 

Running the Program 
N ow run the program by typing: 

RUN I Return I 

or pressing the I RUN I key (00 in the System or in a User menu of ITF keyboards). 

The computer should display the following message on the CRT display (or current 
system display device): 

Short program. 

Further information about running programs in described in the "Loading and Running 
Programs" chapter. 

The next sections describe additional editor and system features. 

1 The EDIT binary must be loaded in order to use LIST and EDIT. 

Editing and Storing Programs 6-13 



A Closer Look at Editing 
This section provides a closer look at the BASIC editor l , showing you more of its powerful 
and easy-to-use features. 

More Details about Getting into EDIT Mode 
The EDIT command allows two parameters. The first is a line identifier and the second 
is the' increment between line numbers. 

For example, the following command tells the computer to place the program 011 the 
CRT so that line 140 is in the current-line position. 

EDIT 140,20 

Also, any lines that are added to the program get a line number 20 greater than the 
previous line. 

If the increment parameter is not specified, the computer assumes a value of 10. Thus, 
the following command tells the computer to place the program on the CRT so that line 
1000 is in the current-line position, and added lines get a line number 10 greater than 
the previous line. 

EDIT 1000 

\Vhen the line identifier IS not supplied~ the computer has some interesting ways of 
assuming a line number. 

• If this is the first EDIT after a power-up. SCRATCH. SCRATCH A. or LOAD. the 
assumed line number is 10. 

• If EDIT is performed immediately after a program has paused because of an error, 
the number of the line that generated the error is assumed. 

• At any other time, EDIT assumes the number of the line that was being edited the 
last time you were in EDIT mode. 

1 The EDIT binary must bE' loadE'd in order to USE' thE' BASIC E'ditor. 

6-14 Eniting ann Storing Programs 



The line identifier also can be a line label. This makes it very easy to find a specific 
program segment without needing to remember its line number. For example, assume 
that you want to edit a sorting routine that begins with a line labeled Go_sort. Simply 
type: 

The line labeled Go_sort is placed in the middle of the display, and lines before and after 
this line (if any) are displayed above and below this line, respectively. 

The EDIT command is not programmable, and you cannot use EDIT mode while a 
program is running. 

In order to locate a program line in a subprogram context, you can use the FIND 
command. See the subsequent section called "Global Editing Operations" for details. 

Typing-Aid Softkey Menu Changes (ITF Keyboards Only) 
When you go from "normal" mode to EDIT mode on a system with an ITF keyboard, 
the softkey menu and labels change to the User 2 menu (if the PDEV and KBD binaries 
are currently loaded). 

While in EDIT mode on an ITF keyboard, however, you can switch softkey menus 
normally: use either the I Shift H Menu I key, or the appropriate statements (such as 
SYSTEM KEYS and USER 1 KEYS) to switch to other menus. 

If you are in the User 2 menu when you exit EDIT mode, the system will return you to 
the menu that was in effect when you entered EDIT mode. 

Editing and Storing Programs 6-15 



A Closer Look at Listing a Program 
All or part of your program can be displayed or printed by executing a LIST statement l . 

The LIST statement allows parameters that specify both the range of lines to be listed 
and the device to which the listing should be sent. 

If the keyword LIST is executed without any parameters. the assumed action is to list 
the entire program on the system printer. 

LIST 

The default system printer after a power-on or SCRATCH A is the CRT. (The system 
printer is defined by the PRINTER IS statement.) 

Starting and ending linC' numbers can be spC'cified in t hC' LIST statement. For example. 
the following command lists lines 100 through 200, inclusively. 

LIST 100,200 

The following example lists the last portion of the program, from line 1850 to the end. 

LIST 1850 

The line identifiers can also be labels. For instance. the following command lists the 
program from the line labeled "Rocket" to the end. 

LIST Rocket 

1 The EDIT binary must be loaded in order to use the LIST statement and not get the message (Requires 
EDIT binary). 

6-16 Editing and Storing Program;;; 



Directing the listing to a device other than the CRT is easy, but involves concepts that 
have not been introduced yet. If you want a listing on a printer, you have two choices: 

• Specify a different system printer, and then use the LIST statement. For example: 

PRINTER IS 701 
LIST 

The parameter 701 identifies the printer connected to the computer through the 
interface at select code 7 (the built-in HP-IB); the printer itself has an address 
setting of 01. You can also use the PRT function, which returns a value of 701. 

However, it is often desirable to keep the CRT display as the system printer and 
still get program listings on an external printer . 

• Specifying the printer in the LIST statement. For example, the following command 
sends the entire program listing to an HP-IB printer (address 01) without changing 
the system printer selection. 

LIST #701 

When both the printer and the line range are specified, the printer number is 
specified first and terminated with a semicolon. For example, this command lists 
lines 200 through 500 on the device connected to the interface at select code 12. 

LIST #12; 200,500 

Editing and Storing Programs 6-17 



Global Editing Operations 
The preceding sections showed how to edit single program lines. This section shows how 
to perform editing operations that may affect the entire program. 

BASIC 
Command 

REN 

INDENT 

FIND 

CHANGE 

COPYLINES 

Purpose and Example Command 
Typing-Aid 

Softkeyl 

renumbers the program (or a specified segment of the pro- [IT] (CEIJ) 
gram) 

REN 100,10 

indents lines in a program to show the nesting of the branch- [![) (lEJ) 
ing constructs (such as FOR .. NEXT and REPEAT .. UNTIL). 

INDENT 7,2 

searches the program for a specific textual pattern 

FIND "a pattern" 

searches for a textual pattern, but allows you to optionally [ill ([E[]) 
change it to a new pattern 

CHANGE "old text" TO "NEW CHARACTERS II 

copies (duplicate) program line(s) to another location in a [][] 
program. 

COPYLINES 10,300 TO 550 

MOVELINES moves program line(s) to another location in a program. [ill 

MOVELINES 450,522 TO 10 

DEL deletes program segments (ranges of program lines) 

DEL 100,150 

1 Note that the ITF softkeys ((]], [][I. etc.) are in the User 2 menu. 

This section explains how to use these commands. 

6-18 Editing and Storing Programs 

Not on a 
default typing­
aid soft key. 



Renumbering a Program 
After an editing session with many deletes and inserts, the appearance of your program 
can be improved by renumbering. This also helps make room for long inserts. Renumber 
programs with the REN command. 

This example renumbers the entire program in memory, using a new beginning number 
of 10 and incremental line numbers of 10: 

REN 

Both the starting line number and the interval between lines can be specified. For 
example, the following example renumbers the entire program, using 100 for the first line 
number and an increment of 5. 

REN 100,5 

If the increment (second parameter) is not specified, 10 is assumed. For example, the 
command below renumbers the entire program, using 1000 for the first line number and 
an increment of 10. 

REN 1000 

As shown in the first example above, a value of 10 is assumed for starting-line number 
and line-number increment when no parameters are specified. 

You can also renumber only a specified portion of a program. For example, the following 
command renumbers only line numbers in the range 1000 to 2000: 

REN 1000,10 IN 1000,2000 

Indenting a Program 
INDENT is also a non-programmable command. It is used to scan an entire program 
and indent it so as to show the "nesting" of program segments! that define: 

• Looping (such as FOR .. NEXT and REPEAT .. UNTIL) 

• Conditional execution (such as IF .. THEN and SELECT .. CASE .. END CASE) 

• A separate program segment (such as SUB subprograms and DEF FN user-defined 
functions) 

1 A complete list of the statements that define these constructs is provided in the BASIC Language 
Reference description of the INDENT command. 

Editing and Storing Programs 6-19 



The following program shows the indentation performed by this command: 

INDENT 7,2 

the first parameter (7) indicates the indentation of the "outermost" program segment, 
and the second parameter (2) shows how many additional spaces each subsequently 
nested segment is indented. Notice how easy it is to follow the logic flow? 

10 FOR 1=1 TO 5 
20 REPEAT 
30 INPUT "How old are you?",Age 
40 Reasonable=l! Assume they're telling the truth ... 
50 IF Age<O THEN 
60 DISP "A negative age implies you are not born." 
70 Reasonable=O 
BO ELSE 
90 IF Age>120 THEN 
100 DISP "Are you sure?!" 
110 Reasonable=O 
120 ELSE 
130 IF Age>100 THEN 
140 DISP "You are pretty spry!" 
150 ELSE 
160 IF Age>BO THEN 
170 DISP "Wow! Most people your age don't use computers much." 
lBO ELSE 
190 DISP "Glad to meet you." 
200 END IF 
210 END IF 
220 END IF 
230 END IF 
240 WAIT 4 
250 UNTIL Reasonable 
260 DISP "You were";Age*365.2422;" days old on your last birthday." 
270 WAIT 3 
2BO NEXT I 
290 END 

6-20 Editing and Storing Programs 



Here is another example of indenting the same program, but with different parameters: 

INDENT 5.4 

10 FOR 1=1 TO 5 
20 REPEAT 
30 INPUT "How old are you?".Age 
40 Reasonable=l ! Assume they're telling the truth ... 
50 IF Age<O THEN 
60 DISP "A negative age implies you are not born." 
70 Reasonable=O 
80 ELSE 
90 IF Age>120 THEN 
100 DISP "Are you sure?!" 
110 Reasonable=O 
120 ELSE 
130 IF Age>100 THEN 
140 DISP "You are pretty spry!" 
150 ELSE 

IF Age>80 THEN 160 
170 DISP "Wow! Most people your age don't use computers 
much." 
180 ELSE 
190 DISP "Glad to meet you. II 

200 END IF 
210 END IF 
220 END IF 
230 END IF 
240 WAIT 4 
250 UNTIL Reasonable 
260 DISP "You were"; Age*365. 2422;" days old on your last birthday. II 
270 WAIT 3 
280 NEXT I 
290 END 

Editing and Storing Programs 6-21 



Indentation Bounds 
When indentation parameters attempt to force program statements too far to the righL 
they are bounded by the width of the screen minus 8 characters. That is, a program line 
will never start to the right of 8 characters from the right-hand edge of the screen. For 
instance, on an 80-column screen, a program line will never start to the right of column 
72. Instead, all lines which should be indented farther to the right of this column will 
begin in this column; indentation remains in this column until the nesting level gets back 
to a manageable poinL at which time the line beginnings will begin to drop back to the 
left. 

Removing Indentation 
To remove all indenting, execute this command: 

INDENT 7.0 

Finding Textual Patterns 
When programs are larger than a couple of screenfuls, it is handy to have the com­
puter search for a variable name, numeric or string literal, comment, etc. The non­
programmable FIND command allows you to do this. 

The following example searches the current program, beginning at the line currently 
being edited, for the letters "A pattern": 

FIND "A pattern" I Return I 

These letters may be a variable name, a string or numeric literal, or a comment (or a 
portion of any of these). 

If you want to begin the search in a different place, then specify the range of lines to be 
searched: 

FIND "A pattern" IN 200.650 I Return I 

Upon executing this command, BASIC begins a search for these characters. The following 
messag(' is shown in th(' message/results line (helow the "k('yboard input line", which is 
near the middle of the screen in EDIT mode): 

Finding "A pattern" 

If the pattern is not found, then the system displays the following message: 

"A pattern" not found 

6-22 Editing and Storing Programs 



If an occurrence of these letters is found, the system displays the program line containing 
the pattern and a confirmation: 

300 PRINT "A pattern of circles is shown on the display." 

Found "A pattern" 

You can choose any of the following actions: 

• Edit the line (optional): move the cursor, and change, add, or delete characters. 

• Press I Return 1 to store the edited (or unchanged) line. 

• Scroll the program up or down (with the 0 or [!] cursor keys), which cancels the 
FIND mode. 

• Press I CONTI NUE 1 (@]) to leave the line unchanged and continue the search. 

If you choose to remain in FIND mode, press I Return I. After checking syntax of the 
line, the FIND command will begin searching for the next occurrence of the specified 
characters; if the modified line contains a syntax error, you may correct the error and 
press I Return 1 again. Once the line is syntactically correct, the FIND command begins 
searching for the next occurrence of the specified string. 

You will remain in FIND mode as long as the FIND command has additional program 
lines to search. The system reminds you that you are in this mode by displaying these 
prompts at the bottom, right-hand corner of the screen: 

l 
Command 

.J 
If you want to abort the FIND command, then use the I Break 1 (I CLR 1/0 I) key to cancel 
the mode. The system will display: 

Search aborted at nnnnn; "A pattern" not found. 

in which nnnnn is the line number at which the FIND was aborted. 

Editing and Storing Programs 6-23 



Search-and-Replace Operations 
The CHANGE command is similar to FIND, except that you will specify both a search 
pattern and a replacement pattern. 

The following example searches for the pattern "Old texf' and replaces it with "New 
characters" : 

CHANGE "Old text" TO "New characters" I Return I. 

Likf' with FIND. thf' systf'm shows that it is busy searching for a pattern: 

Finding "Old text" 

Also like FIND. the CHANGE command pauses when it finds the first occurrence of the 
sf'arch pattern: however. ('HANCE also rf'places thf' old pattf'rn with the new one. and 
awaits your confirmation/rejection of the change: 

200 PRINT "New characters." 

"Old text" to "New characters"? 

• Like FIND, you can edit the line first. To confirm the change, press I Return I . 

• To reject the change, press I CONTINUE I (@J in the System menu of an ITF keyboard). 

If you want only the occurrences of the pattern in a certain program segment to be 
changed, then use the following syntax: 

CHANGE "old" TO "New" IN 1, 250 

If you want all occurrences of the pattern changed. with no capability of interactively 
confirming/rejecting the changes, use the following syntax: 

CHANGE "old" TO "New" ; ALL 

You can also combine these two specifications to change all occurrences within a range 
of lines: 

CHANGE "old" TO "New" IN 1, 250; ALL 

6-24 Editing and Storing Programs 



Copying Program Segments 
While programming, you may encounter a need to duplicate several lines of BASIC 
code in another location of the program. With this BASIC system, the COPYLINES 
command provides an easy way of doing this kind of operation. Make sure the line to 
which you copy is not an already existing line. 

The first example belo,-{ copies lines 180 through 220 to a location beginning at line 5205: 

COPYLINES 180,220 TO 5205 I Return I. 

The following example copies lines 300 through 3005 to a location beginning at line 100: 

COPYLINES 300,3005 TO 100 I Return I. 

If the line you try to copy to already exists, an error occurs and no lines are copied. You 
cannot copy to an already existing line. 

Moving Program Segments 
Earlier sections of this chapter showed how to use the I RECALL 1 key to recall a line which 
was previously deleted. You could use this technique to move one or two lines from one 
location in a program to another. However, when you are moving several program lines 
at a time-to a spot several screens away from the original location-there is an easier 
way: use the MOVELINES command. Make sure the line to which you move is not an 
already existing line. 

This example command moves lines 32 through 127, inclusive, to a spot beginning at 
line 453: 

MOVELINES 32,127 TO 453 I Return I. 

The following example moves lines 300 through 3005 to a location beginning at line 100: 

MOVELINES 300,3005 TO 100 I Return I. 

If the line you try to move to already exists, an error occurs and no lines are moved. You 
cannot move to an already existing line. 

Editing and Storing Programs 6-25 



Moving Lines into a Subprogram 
01H' of the lIlOrt' frequ(,llt 1l~(':-; you may find for t be \;fOVELI~ES command i~ ill IIlovillg 
program lines from a "main context" into a separate "subprogram context" (defined by 
SUB and SUBEND statements). However. you may have noticed that to do so you mU"lt 
go to a line below all of the existing lines ill lllelllory alld clltcr the SUB stateIIlcnt. 

2100 SUBEND 
2110 SUB New_subprogram 
2120 

AftN typing in this suhprograrn hf'ading. YOll can lIse MOVELI\,ES to mov(' program 
lines from the main program (or from another subprogram) into the new subprogram: 

MOVELINES 350,499 TO 2120 

Don't forgf't to ddimit the end of the new context wit h a SlTBEND statement! 

2630 SUB END 
2640 

Deleting Multiple Lines 
The DEL command, introduced in a preceding section. can also be used to delete several 
lines in a single operation. Blocks of program lines can be deleted by using two line 
identifiers in the DEL command . 

• The first number or label identifies the start of the block to be deleted . 

• The second number or label identifies the end of the block to be deleted. 

The lill(' icirntifif'rs lllUSt appear ill t he same order they do ill t he program. Here arC' 
some examples. 

The following command deletes lines 100 through 200, inclusively. 

DEL 100,200 

This command del('tes all th(' lillf'S from the OIl(' lab('l('d "I310ck2" to the end of th(' 
program. 

DEL Block2,32766 

6-26 Editing and Storing Programs 



This command would do nothing except generate an error: 

DEL 250,10 

If you have subprograms or user-defined functions in your program, they can only 
be deleted in certain ways (such as with DELSUB). Primarily, the SUB or DEF 
FN statement cannot be deleted without deleting the entire subprogram or function. 
This subject is explained fully in the "Subprograms" chapter of BASIC Programming 
Techniques. 

The DEL command is not programmable and cannot be used while a program is running. 

Making Programs Readable 
When first learning how to program, most people view the use of comments, long variable 
names, descriptive printouts, and other documentation tools as merely extra typing 
that isn't really necessary in their short programs. As time passes, old programs are 
expanded, new programs are written, and more people use the program. Eventually, 
software support activities become necessary. Some obscure bug is found or some exciting 
enhancement is requested. The programmer picks up a copy of a program written a year 
ago and can't begin to remember what "Xl" was or why you would ever want to divide 
it by "X2". Program documentation can make the difference between a supportable 
tool that adapts to the needs of the users and a support nightmare that never really 
does exactly what the current user wants. Keep in mind that the local software support 
person just might be you. 

This BASIC language makes it easy to write self-documenting programs. In addition to 
BASIC's standard REM (remark) statement, additional documentation features are: 

• Descriptive keywords (such as REPEAT .. UNTIL, LOOP .. END LOOP, and so forth) 

• Descriptive variable names (up to 15 characters) 

• Descriptive line labels (up to 15 characters) 

• End-of-line comments. 

Editing and Storing Programs 6-27 



Contrast Between Documented and Undocumented Programs 
Although this section deals primarily with commenting Inethods, all of these features 
work together to make a readable program. The following example shows two versions 
of the same program. The first version is uncommented and uses "traditional" BASIC 
variable names. The second version uses the features of HP's BASIC language to make 
the program more easily understood. Which version would you rather work with? 

100 PRINTER IS 1 
110 A=.03 
120 B=.02 
130 X=O 
140 Y=O 
150 C=A+B 
160 PRINT " Item Total Total" 
170 PRINT " Price Tax Cost" 
180 PRINT "------------------------------" 
190 P=O 
200 INPUT "Input item price".P 
210 D=P*C 
220 E=P+D 
230 X=X+D 
240 Y=Y+E 
250 DISP "Tax =";D;"Item cost =";E 
260 PRINT P.X.Y 
270 GOTO 190 
280 END 

6-28 Editing and Storing Programs 



100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 

This program computes the sales tax for 
a list of prices. Item prices are input 
individually. The tax and total cost for 
each item are displayed. The running 
totals for tax and cost are printed on 
the CRT. Modify line 220 to change the 
the system printer. 

Sales tax rates are assigned on lines 230 
and 240. The rates used in this version 
of the program were in effect 1/1/81. 

220 RINTER IS CRT 
230 State_tax=.03 
240 City_tax=.02 
250 ! 

Use CRT for printout 
Local tax rates 

260 Total_tax=O 
270 Total_cost=O 

! Initialize variables 

280 
290 
300 
310 
320 
330 

Tax_rate=State_tax+City_tax 
! Print column headers 
PRINT" Item Total Total" 
PRINT" Price Tax Cost" 
PRINT "------------------------------,, 

340 LOOP ! Start of main "Get Price" loop. 
350 Price=O ! Don't change totals if no entry. 
360 INPUT "Input item price".Price 
370 Tax=Price*Tax_rate 
380 Item_cost=Price+Tax 
390 Total_tax=Total_tax+Tax ! Accumulate totals. 
400 Total_cost=Total_cost+Item_cost 
410 DISP "Tax =";Tax:" Item cost =":Item_cost 
420 PRINT Price. Total_tax. Total_cost 
430 END LOOP ! Repeat loop for next item. 
440 END 

There are two methods for including comments in your programs. The use of an 
exclamation point is demonstrated in the second example program. The exclamation 
point marks the boundary between an executable statement and comment text. There 
does not have to be an executable statement on a line containing a comment. Therefore, 
the exclamation point can be used to introduce a line of comments, to add comments to a 
statement, or simply to create a "blank" line to separate program segments. Exclamation 
points may be indented as necessary to help keep the comments neat. 

Editing and Storing Programs 6-29 



The REM statement can also be used for comments. Ttl(' exclamation point is neat('r 
and more flexible 1 but the RElvl statement provides compatibility with other BASIC 
languages. The REM keyword must be the first entry after the line identifier and must 
be followed by at least one blank. Note also that the REM staterrient moves when a 
program is indented (with INDENT): however, .,!l· comments do not get indentation 
changed (unless forced by other text in that line). 

Here are some examples of proper and improper REM statements and "!" comments. 

Right Wrong 

10 REM Check Book Balance 20 REMinitialize array 

40 Start2: ! Subtotal loop 50 X=PI*R-2 REM Area of circle 

General Recommendations for Commenting Programs 
Each programmer has an individual style in the use of comments. Therefore 1 the following 
is not a list of rules. It is simply some suggestions on the effective use of comments. 

1. Include a program heading that answers the following questions: 

a. Why was the program written? 

h. What does it do? 

c. Who would probably use it? 

d. Who is the author of the program? 

e. When was the date of the last revision'? 

f. Who if' rnrrently in rhargf' of f'llpporting it? 

g. What modifications could/should be made by a normal user? 

2. Describe all variables 1 especially global variables. A descriptive variable name may 
do the job. or a more detailed explanation may be needed. 

3. Describe any hardware or software configuration required for the proper running of 
the program. This may even include an explanation of how to modify the program 
to accommodate alternate devices (when such changes are reasonable). 

4. Make major blocks and entry points visible. Many tools are available for this. 
including descriptive labels1 indenting. spacing. and comments describing program 
flow. 

6-30 Eoiting ano Storing Programs 



5. Use comments freely to describe the action of complex lines, equations, fancy 
manipulations, and "low-level" operations like CONTROL statements and escape 
code sequences. These heavily coded operations can be very important to the 
computer but very mysterious to the human trying to read the program. 

Software Security 
There may be times when you want to keep portions of your programs from being read 
or used by other programmers or users. With this BASIC system, and Series 200/300 
computer hardware, you can either prevent a program from being read, or from being 
executed unless you give the authorization. 

Preventing Programs from Being Listed 
With this BASIC system, you can use the SECURE statement to prevent program line(s) 
from being listed. (Another way is to simply make sure that the EDIT binary is not 
loaded in the system or available to anyone who you don't want to look at any programs. 
However, that is not a highly restrictive method since the EDIT binary is available as a 
standard component of most Series 200/300 BASIC systems.) 

The following example secures lines 30 through 60 from being listed (either with the 
editor or by using the LIST statement): 

SECURE 30,60 

Here is what the program might look like-either with the editor or as the output of a 
LIST statement: 

10 Example of SECURE'd program. 
20 ! Begin password check routine. 
30* 
40* 
50* 
60* 
70 End of password check. 
80 

Editing and Storing Programs 6-31 



If you want the whol(' prograIll to 1)(' S('Cl1rpd. us£' this stat(,IIlPllt: 

SECURE 

Note 

Once a program is s('cured. it cannot be ull-s('cnr('d. Therefore. 
you should kpep an un-spcured back-up copy of all programs. 

Other Security Measures 
There is also another method of preventing software from being used by anyone who 
Illay acquire a copy of it. You can write a routine that checks the serial number of a 
computer. or the serial number of an optional HP 46084 ID Module. Then your routine 
call detennille whether ur llut tu permit the rest of the program to 1)(' executed on this 
hardware configuration. 

Reading an 10 PROM 
To read the serial number of a computer. use the following statement: 

SYSTEM$(IISERIAL NUMBER II ) 

The function rpturns th(' nmtents of the ID PROM~ if pres('nt. or th<:> null string if no ID 
PROM is present. 

Reading an 10 Module's Contents 
The same function: 

SYSTEM$("SERIAL NUMBER") 

also returns the encoded contents of an ID Module. In ord<:>r to decode an ID Modul<:>~s 
contents, use the "ID_MODULE" program supplied on the Manual Examples disc. 

6-32 Editing and Storing Programs 



A Closer Look at Storing Programs 
To write a program to a mass storage device, you will use either the SAVE or the STORE 
statement. There is no "right" or "wrong" choice; your choice depends upon the kind of 
file you want . 

• STORE records an internal representation of the program in a PROG file. The 
main advantage of a PROG file is a rapid retrieval rate . 

• SAVEl records the actual text of the program in an ASCII file. The main advantage 
of an ASCII file is that it can be read as data by a BASIC program or by LIF­
compatible2 devices (such as other HP computers and terminals). 

The following table gives a summary of the differences between SAVE and STORE. 

Characteristic SAVE STORE 

File type created: ASCII PROG 

Retrieved by: GET LOAD 

Approximate storage speed: 900 bytes/s 13 000 bytes/s3 

Approximate retrieval speed: 300 bytes/s4 14 000 bytes/s3 

Can file be read as data? Yes No 

LIF -compatible file? Yes No 

Arbitrary program segments Yes No 
allowed? 

Subprograms included? Yes Yes 

Can use LOAD SUB to retrieve a No Yes 
subprogram ? 

Stores CSUBs correctly No Yes 

1 Using SAVE requires the EDIT binary. 
2 LIF is the acronym for Logical Interchange Format, which is a disc format used by several HP divisions. 

(Note that the first letter of the file name must be a letter; in addition, some LIF-compatible devices 
restrict file names to upper-case letters and the decimal digits 0 through 9.) 

3 The speeds for LOAD and STORE are approximate for an interleave factor of 1 on an HP 9836 internal 
disc drive. Interleave factors greater than this will cause a corresponding decrease in speed. 

4 The retrieval speed for GET is very data-dependent. On an HP 9836 with a clock rate of 8 MHz, 
for instance, it can vary from 20 bytes/second to 600 bytes/second (and maybe beyond those limits) 
according to the contents of the file and the syntax checking required to enter the lines into program 
memory. See the "Efficient Use of the Computer's Resources" for a discussion of how to time various 
computer operations. 

Editing and Storing Programs 6-33 



Using STORE 
The following command creates a program file called ';MyProgFile" OIl the current default 
volume: 

STORE "MyProgFile". 

If you to get error 54, that means that there is already a file on the disc with the name 
you are using. In this event, you have three choices. 

• Pick a name that doesn't already exist. To determine which file names are already 
being used, execute a CAT command. 

• You may want to replace the existing file with a new one (like when you update 
program files with a new, improved version). To replace an existing file, use the 
RE-STORE statement. For example. the command to replace a program file called 
"BEAMS" is: 

RE-STORE "BEAMS" 

Note that the hyphen must be used in the RE-STORE statement. (RESTORE 
without a hyphen is used to reset the pointer associated with DATA statements: 
see the "Data Storage and Retrieval" chapter of BASIC Programming Techniques 
for details.) 

• PURGE the old file, then STORE the new one. 

Using SAVE 
The SAVE operation is similar to the STORE operation in that it stores the current 
program in a file; however, it has one additional feature. The SAVE statement allows 
line identifiers that specify what portion of the program you want to save. This is 
especially helpful when moving or appending program segments during major editing 
operations. Here are some examples of using the SAVE statement. 

To save all of a program in an ASCII file called "WHALES". on the current default 
volume, execute the following command: 

SAVE "WHALES" 

The following command saves the last part of a program, from line 500 to the end. in an 
ASCII file called "LastPart". 

SAVE "LastPart",500 

6-34 Editing and Storing Programs 



When both the starting and ending lines are specified, any arbitrary portion of a program 
can be saved. Executing the following command saves that portion of a program that 
is between the lines labeled "Sort" and "Printout" (inclusive) in an ASCII file called 
"Sorter" . 

SAVE IISorterll.Sort.Printout 

There is also a RE-SAVE statement that allows an existing file to be replaced by a newly 
created file with the same name. For example, to update an ASCII file called "Analysis" 
with a new version of the program, the following command would be used. 

RE-SAVE IIAnalysis ll 

Creating Files Compatible with vi 
If you want to create a file that you can edit with the HP-UX system's vi editor, here 
are the steps to take: 

1. Use the CREATE statement to create a file of type HP-UX: 

CREATE lIux_file ll .1 (number of records is not important) 

2. Use the RE-SAVE statement to save the program in the file you just created: 

RE-SAVE lIux_file ll 

The reason for the RE-SAVE (instead of just SAVE) is that the BASIC system 
would have created an ASCII type file with SAVE, while the RE-SAVE will maintain 
the file type (which in this case is a file of type HP-UX). 

Editing and Storing Programs 6-35 



What to Do Next 

Task/Topic Chapter /Section 

Learn how to load and run programs. "Loading and Running Programs 
.. 

Learn how to use and manage files. "Using Files and Directories" 

Learn about each key on your keyboard. "Keyboard Reference" 

Learn how to maintain your system. Maintaining BASIC section. Installing and 
Jfmntammg thE J]a.c:l< ,'-,'ystr:m 

Learn about utilities available with the BASIC "BASIC Utilities Library" . Installing and 
system. Maintaining the Basic System 

6-36 Editine ;:mrl S;t()ring Pr()grams 



Where to Go 
Task/Topic for Details 

BASIC ITF keyboard overlays 7-2 

Character enter keys 7-2 

Cursor-control keys 7-5 

Numeric keypad 7-6 

Editing keys 7-7 

Program control keys 7-9 

System control keys 7-lO 

Softkeys and 80ft key control 7-12 



ITF Keyboards 7 
If you do not have the ITF keyboard, skip ahead to one of the following chapters, which 
describe the HP 98203B/C and HP 98203A keyboards. 

The keys on the ITF keyboard are arranged into the following functional groups: 

Program 
Control 
Keys 
~ 

Softkeys and 
Softkeys Control 

Editing 
Keys 

--.. 
System 

Control Keys 

Ie) ~IID D [] D Dr;:] L:J L:J D L:JII~ ~I 100001 

DD[D[[][]lD[o[][olD([]D[;]~ EJ~ 

~~~D~~u~D~~D~D~~ 

EJ EJ ~ [] ~ D 0 EJ e:J.El 0 0 0 L=:J ~ LJ
~ EJuuO[]~~~DrJ[]EJ LJ~LJ

r;;] Ell IEl ~~~

Character
Entry Keys

Cursor
Control Keys

Figure 7-1. ITF Keyboard

EJEJEJO
O[!][]EJ

EJ~~O
D~~~
c=JoU

Numeric
Keypad

This chapter provides a handy reference guide to BASIC's key definitions for the ITF
keyboard. Keep in mind that other system programs may define the keys differently.
Each key will be demonstrated where possible. One point to clarify: the cursor that we
refer to in the following paragraphs is the blinking-underline that points to a location on
the screen. (If you have a Model 237 computer, an HP 98700 Graphics Display station,
or an HP 98548A, HP 98549A, or HP 98550 display, the cursor does not blink.)

Note

Before you proceed, type:
SCRATCH I Return I

This clears the computer of any programs that might be left in
memory from previous demonstrations.

ITF Keyboards 7-1

BASIC ITF Keyboard Overlays
Two keyboard overlays designed for the ITF keyboard were included with your BASIC
Language System. Place the overlays on the keyboard as shown below:

I

II:; 1 fOl rwl rEI fRllrllvl rul n ~ fPl n rn n
I

I EJEJ~[]~[]~EJUEJDDDr=J ~LJ
~ EJuuDEJ[]EJEJEJEJDEJ LJ~LJ

1[;;] ~ c= _______ = r:=1 ~ C!J ~

Figure 7-2. BASIC Keyboard Overlays

Character Entry Keys

The character entry keys are arranged like a typewriter, but have some added features.

The ~ key sets the unshifted keyboard to either upper-case (which
is the default after BASIC is booted) or lower-case (normal typewriter
operation). The computer displays which mode the computer is in when
you press the ~ key.

Type a few words, then press ~ and continue typing. Notice the
case change. Press I Shift H Clear line I when finished.

7-2 ITF Keyboards

You can enter standard upper-case and lower-case letters, using the I Shift I
key to access the alternate case.

Type a few words, pressing I Shift 1 to change the case of the first letter
of each word. Now press ~ and continue typing. Notice that the
alternate case accessed by I Shift 1 depends on the setting of~. Press
I Shift H Clear line I when finished.

The I Return 1 key has three functions:

• When a running program prompts you for data, respond by typing the
requested data and then pressing I Return I. This signals the program that
you have provided the data and that it can resume execution.

• When typing in lines of a program, the I Return 1 key is used to store each
line of program code.

• After typing in a command, the I Return 1 key causes the command to be
executed.

Type EDIT and press I Return I. Notice the number 10 now displayed on
the screen-this is the line number of the first line of.a BASIC program.
The computer is waiting for you to type in the line. Type:

!FIRST LINE

and press I Return I. Notice that the computer accepts the statement as
a program line and displays 20 in preparation for the next one. Press
~ when finished.

Pressing I Enter 1 is the same as pressing the I Return 1 key.

Pressing I Print 1 (I Shift H Enter I) prints a complete copy of the alpha display
on the default printer. The shifted version of the key directly above the
[2] key in the numeric keypad (labeled Dump Alpha on the overlay)
performs the same function.

ITF Keyboards 7-3

I Extend char I When pressed along with another key. this key allows you to generate
the rest of the full 256-bit character set from the main typewriter
section on Standard and European keyboards (see illustration). On
a Katakana keyboard, the "Roman" and "Kat akana" keys select the
other character sets. To get Katakana characters 161 through 254 on a
medium-resolution Series 300 screen, you must load the LEX language
extension binary.

i Ifl 0 r;;;I It;l n n r:::l n n 0 r=l II r;l I:;:. I r='1 ~ I
~, ~~~~~~~, ~L=-J~L-..J CJLJI

~GOrnOLJ 5 rn0000 ~~.
a w , R, U 0 P [[\ I

l:J LJ ~ ~ l-1J ~ W ~ WJ ~ ~ CD LJ I"'~ I EJ LJ I

bJ EJP~pJpJ~~~OO~EJ EJ~LJI
[:J Ell IE) ~[!J~

Figure 7-3. Extended Character Set

The I Tab I key moves the cursor forward to preset tabs. Pressing I Shift ~

I Tab I moves the cursor backward to preset tabs.

Before I Tab I can be used, a tab must be set. Tabs are set and cleared wit h
System menu softkeys. The I Tab I key is demonstrated along with the
Set Tab/Clr Tab soft key under "System Softkeys" later in this chapter.

The I CTRL I (control) key works like I Shift I to access a set of standard
control characters, such as line-feed and form-feed. These characters
are useful to the programmer for controlling some devices and for
communicating with other computers. You probably won't need them
when running programs. The available control characters are listed in
the BASIC Language Reference in the "Useful Tables" appendix.

The I Select I key beeps but performs no function unless it is program­
defined.

7-4 TTF Kf'yhoards

Cursor-Control Keys

The cursor-control keys move the display cursor. The m and [!] keys allow you to scroll
lines in the output area up and down. Shifted, the keys allow you to "jump" to the top
and bottom of the output area. The [8 and GJ keys allow you to move horizontally
along a line. Shifted, they allow you to "jump" to the left and right limits of a line. The
I Back space I key works just like the GJ key.

The unshifted m key positions the print position at the beginning position on the page.
The shifted m key places the print position at the beginning of the first empty line in
the display (scrolls up if necessary). In edit mode, pressing this key (shifted or unshifted)
causes the computer to beep.

To verify operation of the m key, press I Clear display I. Then type PRINT "SOMETHING" and
press I Return I; repeat twice. You should now have the following display:

SOMETHING
SOMETHING
SOMETHING

Press the m key (unshifted).

Type PRINT "ANY" and press I Return I. Your display should look like this:

ANY THING
SOMETHING
SOMETHING

Press I Clear display I.

In normal mode, pressing the I Prey I key causes the display to scroll down one page and
pressing the I Next I key causes the display to scroll up one page. In edit mode, these keys
move the display one-half page.

ITF Keyboards 7-5

To test the horizontal movement of the cursor, type a few words and press the shifted
and unshifted 8J and [8 keys. Notice that the cursor cannot be moved beyond the
characters you have typed. Press I Shift H Clear line 1 when finished.

To test the vertical movement of the cursor, type EDIT and press I Return I. Now type the
following lines, pressing I Return 1 after each line (the first line may be there already, so just
press I Return 1 to accept it):

10 !FIRST LINE
20 !SECOND LINE
30 !THIRD LINE
40 !FOURTH LINE

Tryout the shifted and unshifted 0, [!], and [E) keys. Then try the I Prey 1 and I Next 1

keys. When you're done, press ~ to exit. Then, type SCRATCH I Return 1 to clear memory.

Numeric Keypad

EJEJEJO
~~[]EJ

~~ElO

65U
The numeric keypad provides a convenient way to enter numbers and perform arithmetic
operations. Simply type in the arithmetic expression you want to evaluate, then press
I Enter I. The result is displayed in the lower-left corner of the screen.

The I Enter 1 key performs the same function as the I Return 1 key. The I Tab 1 key on the
numeric keypad functions like the I Tab 1 key in the character entry area. The shifted
versions of the [!], [ZJ, CD, and 0 keys are E, (,), and A, respectively (see labels on
the overlay). The shifted versions are also available in the character entry area.

Type in the following problem using the numeric keypad:

(26+14)/4

Now press I Enter I to perform the calculation. The answer, 10, is displayed in the lower-left
corner of the screen.

7-6 ITF Keyboards

Editing Keys

The editing keys put easy character editing and line editing at your fingertips.

I I nsert line 1

I Delete line 1

Pressing I Insert line 1 inserts a new line above the cursor's current position
(edit mode only).

Type EDIT, then press I Return I. Type in this line (if it isn't already there):

10 !FIRST LINE

Now, with the cursor somewhere on line 10, press I Insert line I. Notice
that a new line number (1) is inserted before line 10. Press ~ when
finished.

Pressing I Delete line 1 deletes the line containing the cursor (edit mode
only).

Type EDIT, then press I Return I. Position the cursor to the line:

10 !FIRST LINE

and press I Delete line I. The line is removed. To restore it, press the key
directly above [!] (labeled Recall on the overlay) to recall it, then press
I Return 1 to enter it into the program. Press ~ to exit edit mode.

ITF Keyboards 7-7

I I nsert char I

, Delete char I

, Clear line I

I Clear display 1

Pressing 'Insert char I sets insert mode, allowing you to insert characters
to the left of the cursor. Press the key a second time to cancel insert
mode.

Carefully type the following line exactly as shown:

THIS IS A TEST .

Position the cursor under the period and press 'Insert char I. Now type:

OF INSERT MODE

and press 'Insert char 1 again. The line should now look like this:

THIS IS A TEST OF INSERT MODE.

The new characters wt?rt? inserted to the left of the period. Press ~
'Clear line 1 when finished.

Pressing , Delete char I deletes the character at the cursor's position.

Type a few words and experiment with I Delete char I, positioning the
cursor at various places on the line. Notice that if you hold the key down,
characters are deleted until you release it. Delete all of the characters
you typed.

Pressing unshifted-I Clear line I (labeled elr ~ End on the overlay) clears
from the current cursor position to the end of the line.

Pressing I Shift H Clear line I (labeled Clr Ln on the overlay) clears the
key board line and message / resul ts lint?

Type in a few words and use the GJ key to position the cursor in the
middle of the line. Press unshifted-' Clear line 1 to clear to the end of the
line. Press' Shift H Clear line I to clear the rest of the line.

Pressing either the shifted or unshifted version of I Clear display 1 clears the
entire alpha screen.

Type the following BASIC cOIllmand:

PRINT "PUT THIS MESSAGE IN THE OUTPUT AREA."

Now press I Return 1 to execute it. Press the key directly above [!] (labeled
Recall on the overlay) to recall the command, and press , Return 1 again.
Repeat this step several times to fill the screen with messages. Now
press I Clear display 1 to erase all lines at once.

7-8 ITF Keyboards

Program Control Keys

The following keys allow you to control execution of the program stored in the computer's
memory.

Pressing unshifted-~ (labeled Pause on the overlay) pauses program
execution after the current line. Pressing Continue (unshifted (0) in the
System menu resumes program execution from the point where it was
paused.

Pressing I Shift ~~ (labeled Stop on the overlay) stops program execu­
tion after the current line. To restart the program, press RUN (unshifted
00) in the System menu.

Pressing I Break I (labeled elr I/O on the overlay) pauses program exe­
cution when the computer is performing or trying to perform an I/O
operation. Press I Break I instead of unshifted-~ when the computer
is hung up on an I/O operation, since unshifted-~ works only after
the computer finishes the current program line. Pressing I Break I cancels
the I/O operation and pauses the program at the current line.

Pressing I Reset I (I Shift H Break I) pauses program execution immediately
without erasing the program from memory. The BASIC Reset message
indicates the computer is ready for your command.

ITF Keyboards 7-9

System Control Keys

Four unlabeled keys directly above the numeric keypad control various system functions
related to the display, printer, and editing operations. Most of these keys execute their
functions immediately, as the key is pressed.

To easily identify the keys in the following description, we'll use this convention:

• Key I-Above the 0 key (labeled Recall on the overlay).

• Key 2-Above the [ZJ key (labeled Alpha/Dump Alpha on the overlay).

• Key 3-Above the CD key (labeled Graphics/Dump Graph on the overlay).

• Key 4 Above the 0 key (labeled RES on the overlay).

Key 1-Recall Pressing unshifted-Key 1 (Recall) recalls the last line that you
entered, executed, or deleted. Several previous lines can be recaBed
this way. Recall is particularly handy to use when you mistype a
line. Instead of retyping the entire line, you can recall it, edit it
using the editing keys, and enter or execute it again.

Type:

PRINT "1" I Return I

to print the number 1 on the screen. Now press Key 1 to recall
the print statement. Edit the statement to print the number 2 by
positioning the cursor under the 1 and typing W over it. Press
I Return I again. N ow press Key 1 several times to see all of the
statements it remembers. Then press I Clear display I when finished.

I Shift ~Key 1 moves forward through the recall stack.

Pressing [1[J in the System menu performs the same recall function
as Key 1.

7-10 ITF Keyboards

Key 2-Alpha/
Dump Alpha

Pressing unshifted-Key 2 (Alpha) once turns on the alphanumeric
display. Pressing it the second time turns off the graphics display.
This key function requires that the GRAPH BIN file be loaded. If
you have a Model 237, an HP 98700 Graphics Display station, or
Series 300 computer, this key may perform no function.

Pressing I Shift ~Key 2 (Dump Alpha) prints a complete copy of the
alpha display on the default printer. The Dump Alpha function is
also executed by I Print I.

Key 3-Graphics/ Pressing unshifted-Key 3 (Graphics) once turns on the graphics
Dump Graph display. Pressing it the second time turns off the alphanumeric

display. If you have a Model 237, an HP 98700 Graphics Display
Station, or Series 300 computer, this key may perform no function.

Key 4-RES

Pressing I Shift ~Key 3 (Dump Graph) prints a complete copy of the
graphics display on the default printer. If you have a Model 237,
an HP 98700 Graphics Display Station, or Series 300 computer, the
combined alpha and graphics display is printed.

Both key functions require that the GRAPH language extension file
be loaded.

Pressing Key 4 (RES) either shifted or unshifted returns the result
of the last arithmetic expression that was executed.

Press I Shift H Clear line I, then type:

23+45 I Return 1

The result, 68, is displayed in the lower-left corner of the screen. To
add 123 to this value, press Key 4 and type:

+123 I Return 1

The new result, 191, is now displayed. Press I Shift H Clear line 1 when
finished.

ITF Keyboards 7-11

Softkeys and Softkey Control

There are eight softkeys (labeled [ill through [][) and two keys that control the definitions
of the softkeys (I Menu I and I System I).

When the BASIC system is booted1 the softkeys default to System mode. The System
mode menu that appears at the bottom of your display is shown. System softkeys are
defined following control key definitions. In addition to the System mode, there are also
three User modes: User 1, User 2, and User 3. BASIC Programming Techniques describes
how to set up User modes.

Softkey Control Keys

I System I Pressing unshifted-I System I causes soft keys to assume System mode.
The System menu is displayed, if the I Menu I key is toggled to the
"on" position.

Pressing I User I (I Shift H System I) puts the softkeys in User mode. A
User menu is displayed if the i Menu I key is toggled to the "on"
position l .

Pressing unshifted-I Menu I toggles the soft key labels-turns them on
if they're off and turns them off if they're on.

Pressing I Shift H Menu I increments User mode and menu if User mode
is "on".

"Cser menus are blank unless the KBD language extension binary is loaded. After the
KBD binary is loaded, the softkeys default to the User 1 mode.

1 The system remembers which User menu you were in when you press the I System I key and returns to

that menu when you press the I User I key. A second press of the I User I key will always go to the User
1 menu. There are additional iterations with EDIT mode; see "Typing Aid Soft key Menu Changes" in
the "Editing and Storing Programs" chapter for details.

7-12 ITF Keyboards

Let's get familiar with the two control keys.

First we want to get the System mode selected and menu displayed. If the System menu
is displayed, continue with the next paragraph. If it is not displayed, press I System I. If it
is still not displayed, press I Menu I.

With the System menu displayed, press unshifted-I Menu 1 several times. The system menu
display should go on and off. Leave the System menu displayed, and continue.

N ow press I Shift H User I. The User 1 menu should appear on your display.

Press I Shift H Menu 1 several times. The displayed menus should rotate successively through
the three User menus (User 1 ~ User 2 ~ User 3 ~ User 1 ~ User 2, etc.).

Press unshifted-I Menu 1 several times and the last User menu goes on and off. Leave the
User menu on.

Finish this exercise by pressing unshifted-I System 1 to get your computer back in System
mode.

System Softkeys
The following paragraphs define the eight System softkeys.

Step

Continue

RUN

Step (unshifted-lliJ) allows you to execute one program line at a
time. This is particularly useful for debugging (fixing) programs.

Continue (unshifted-@]) resumes program execution from the point
where it was paused (by an unshifted-[]!QEJ).

RUN (unshifted-@]) starts a ,program running from the beginning.

ITF Keyboards 7-13

Print All

Set Tab/elr Tab

The Print All key (unshifted-rt4l) turns the printall mode on and off.
allowing keyboard operations and displayed error messages to be
copied to a print all device. Press Print All once to set printall "on"
and again to set printall "oW'. An asterisk (*) appears next to All

to indicate that printall is "on".

The display's output area is the default printall device at powerup.
BASIC Programm£ng Techn£ques explains how to select other print all
devices.

Press Print All to turn on print all mode. Now type in the following
command:

PRINT "THIS IS A KEYBOARD OPERATION" I Return 1

Both the PRIl\T command and the message itself are displayed on
the screen, which is the default print all device. Now type:

THIS WILL CAUSE AN ERROR I Return 1

Because this is not an executable BASIC statement, an error message
is displayed, both at the bottom of the screen and in the printall
area at the top. This way, a log is produced of all commands typed
and executed at the keyboard, along with any error messages. Press
I Clear display 1 to clear the display, and press Print All to turn off print all
mode.

Set Tab (unshifted-[]5]) sets a tab at the cursor's current position.
Tabs remain in effect until cleared by either elr Tab or the SCRATCH
A statement (explained in BASIC Programm£ng Techn£que).

elr Tab ([]!illD-Q[]) clears a tab previously set at the cursor's position.

Press the space bar to move t he cursor forward a few spaces and
press Set Tab. Move the cursor back several spaces using ~, then
press I Tab I. Move the cursor forward several more spaces with the
space bar. thf'n press []!illD-1 Tab I. To clear the tab. move the cursor to
the unwanted tab position and press elr Tab. Press I Shift H Clear line 1
when finished.

7-14 ITF Keyboards

Display Fctns

Any char

Display Fctns (unshifted-[][]) sets the display-functions mode, allow­
ing you to see special control characters (e.g., form-feed, carriage
return) on the screen. Pressing this key a second time cancels the
display-functions mode. An asterisk (*) appears next to Fctns to
indicate that display-functions mode is "on".

Type the following line:

PRINT "DISPLAY-FUNCTIONS MODE OFF" I Return 1

Notice the display at the top of the screen. Now press Recall
(unshifted-[][]) to recall the line, and edit it to read:

PRINT "DISPLAY-FUNCTIONS MODE ON"

Press Display Fctns, and then press I Return I. Notice that the carriage
return (CR) and line-feed (LF) control characters are now displayed.
Press Display Fctns again to exit display-functions mode. Press
I Clear display 1 when finished.

Any char (unshifted-illJ) is used to find any ASCII character. First
press Any char. The following message appears above the menu:

Enter 3 digits, 000 to 255

Enter a three-digit number from 000 through 255 representing the
decimal equivalent of an ASCII character. The computer automati­
cally displays the character on the screen. For a list of characters and
their equivalent decimal values, see the US ASCII Character Codes
table in the "Useful Tables" appendix of the BASIC Language Ref­
erence.

Press Any char, then type 65 which is the decimal equivalent of "A" .
The display line now displays "A". Press I Shift H Clear line 1 to erase it.

ITF Keyboards 7-15

Recall The Recall softkey (unshift<'d{![J) acts just lik(' Syst('m Control K('y
1 (described earlier). Recall recalls the last line that you entered.
executed 1 or deleted. Several previous lines can b(' recalled this way.
Recall is particularly handy to 11S(, wh('n yon mistypf' a linf'. Instf'ad
of retyping th(' entire line 1 you can recall it. edit it using the editing
keysl and enter or ex('cut(' it again.

Type:

PRINT "1" I Return I

to print the number 1 011 the screen. Now press Recall to recall
the PRINT statement. Edit the statement to print the numb('r
2 by positioning the cursor under th(' 1 and typing m over it.
rr('ss I Return 1 again. Now pn'ss Recall sf'vf'ral tim£'" to ,,(,(, all of thp
statements it remembers. Note that Recall goes backward through
the queue.

Pressing []Elli]-[][] allows you to cycle forward through the queue
until the last line entered 1 executed, or deleted is displayed. In
the previous exercise you pressed unshifted-[][] several times, cycling
backward through the queue. Now press []Elli]-[][] several times to
cycle forward through the qnene nntil the last line is displayed.

7-16 ITF Keyboards

Where to Go
Task/Topic for Details

Character entry keys 8-2

Numeric keypad 8-4

Cursor-control keys 8-5

Editing keys 8-6

System control keys 8-9

Softkeys 8-11

Program control keys 8-12

HP 98203B/C Keyboards 8
If you have the ITF keyboard, refer to the preceding chapter. If you have the HP 98203A
keyboard, skip to the following chapter.

HP 98203B/C keys are arranged into the following functional groups:

Cursor Wheel Cursor Editing
(Knob) Softkeys Control Keys Keys
~. ~

•
Character

System
Control Keys

_.' .,... .,... ...
,"lI ••• co, .. (.AUHI(S , ...

c::JG=:J~~

C,"",. "fI'" Ct.' .. 'TOO

~~~ 

~ ... ' -----' 
Program Numeric 

Entry Keys Control Keys Keypad 

Figure 8-1. HP 98203B/C Keyboard 

This chapter provides a handy reference guide to BASIC's key definitions for the 
HP 98203B/C keyboard. Keep in mind that other system programs may define the 
keys differently. Each key will be demonstrated where possible. One point to clarify: 
the cursor that we refer to in the following paragraphs is the underline that points to a 
location on the screen. 

Note 

Before you proceed, type: 
SCRATCH I EXECUTE I 

This clears the computer of any programs that might be left in 
memory from previous demonstrations. 

HP 98203B/C Keyboards 8-1 



Character Entry Keys 

The character entry keys are arrangeu like a typewriter. but have SOllle auueu features. 

I CAPS LOCK 1 The I CAPS LOCK 1 key sets the unshifted keyboard to either upper-case 
(which is the default after BASIC is booted) or lower-case (normal 
typewriter operation). The computer displays which mode the computf'r 
is in when you press the I CAPS LOCK I key. 

Type a few words, then press I CAPS LOCK 1 and continue typing. Notice 
the case change. Press I CLR LN 1 when finished. 

You can enter standard upper-case and lower-case letters, using the 
I SHIFT 1 key to access the alternate case. 

Typf' a few words. prf'ssing []E[BJ to change the case of the first letter of 
each word. Now press I CAPS LOCK 1 and continue typing. Notice that the 
al ternate case accessed by I SH I FT 1 depends on the setting of I CAPS LOCK I. 
Press I CLR LN 1 when finished. 

8-2 HP 98203B/C Keyboards 



I ENTER 1 The I ENTER 1 key has several functions: 

• When a running program prompts you for data, respond by typing the 
requested data and then pressing I ENTER I. This signals the program 
that you have provided the data and that it can resume execution. The 
I EXECUTE 1 key can also be used for this function. 

• When typing in lines of a program, the I ENTER 1 key is used to store 
each line of program code. The I EXECUTE 1 key can also be used for this 
function. 

• Like the I EXECUTE 1 key, the I ENTER 1 key can be used to execute commands 
and calculations. 

Type EDIT and press I ENTER I. Notice the number 10 now displayed on 
the screen-this is the line number of the first line of a BASIC program. 
The computer is waiting for you to type in the line. Type: 

!FIRST LINE 

and press I ENTER I. Notice that the computer accepts the statement as 
a program line and displays 20 in preparation for the next one. Press 
I PAUSE 1 when finished. 

The I TAB 1 key moves the cursor forward to preset tabs. Pressing I SHIFT ~ 

I TAB 1 moves the cursor backward to preset tabs. 

Before I TAB 1 can be used, a tab must be set. Press the space bar to move 
the cursor forward a few spaces and press I SET TAB 1 (I SHIFT H RESULT I). 
Move the cursor back several spaces using G, then press I TAB I. Move 
the cursor forward several more spaces with the space bar, then press 
I SH I FT H TAB I. To clear the tab, move the cursor to the unwanted tab 
position and press I CLR TAB 1 (I SHIFT H PRT ALL I). Press I CLR LN 1 when 
finished. 

The I CTRL 1 (control) key works like I SHIFT 1 to access a set of standard 
control characters, such as line-feed and form-feed. These characters 
are useful to the programmer for controlling some devices and for 
communicating with other computers. You probably won't need them 
when running programs. The available control characters are listed in 
the "Useful Tables" appendix of BASIC Language Reference. 

HP 98203B / C Key boards 8-3 



Numeric Keypad 

8000 
OG[!]D 
0080 
OO[!]O 
G008 

The numeric keypad provides a convenient way to enter Ilumbers and perform arithmetic 
operations. Simply type in the arithmetic expression you want to evaluate, then press 
I EXECUTE I. The result is displayed in the lower-left corner of the screen. 

Typ(' in the following problelIl u:-;ing tll(' llllllH'ric h'ypad: 

(26+14)/4 

N ow press I EXECUTE 1 to perform the calculation. The answeL 10, IS displayed m the 
lower-left corner of the screen. 

8-4 HP 98203B/C Keyboards 



Cursor-Control Keys 

The cursor-control keys move the display cursor. The IT] and [TI keys allow you to 
scroll lines in the output area up and down. Shifted, the keys allow you to "jump" to the 
top and bottom of the output area. The G and G keys allow you to move horizontally 
along a line. Shifted, they allow you to "jump" to the left and right limits of a line. The 
I BACK SPACE 1 key works just like the G key. 

The cursor control wheel (also called the knob) allows you to rapidly scroll the print area 
(with I SHIFT 1 pressed) or move the cursor left and right (unshifted). 

To test the horizontal movement of the cursor, type a few words and press the G and 
G keys. Notice that the cursor cannot be moved beyond the characters you have typed. 
Now rotate the wheel to move the cursor. Press I CLR LN 1 when finished. 

To test vertical scrolling, type EDIT and press I EXECUTE I. Now type the following lines, 
pressing I ENTER 1 after each line (the first line may be there already, so just press I ENTER 1 

to accept it): 

10 !FIRST LINE 
20 !SECOND LINE 
30 !THIRD LINE 
40 !FOURTH LINE 

Press the I SHIFT 1 key and rotate the wheel to scroll the text up and down. Also tryout 
the IT] and [TI keys. When you're done, press I PAUSE 1 to exit. 

HP 98203B/C Keyboards 8-5 



Editing Keys 

The editing keys put easy character editing and line editing at your fingertips. 

I RECALL I 

The []QTI] key is a typing convenience; pressing 'EDIT 1 followed by 
I EXECUTE I puts the computer in program edit mode. Edit mode allows 
you to enter and edit program lines. 

Press I EDIT I, then' EXECUTE I to enter edit mode. The number 10 appears 
on the screen. This is a line number for a BASIC program; the computer 
is waiting for you to type in a line of code. If there is a program already 
in memory. the computer displays it on the screen. Press I PAUSE 1 to exit 
edit mode. 

The 'RECALL I key recalls the last line that you entered. executed, or 
deleted. Several previous lines can be recalled this way. 'RECALL 1 is 
particularly handy when you mistype a line. Instead of retyping the 
entire line, you can recall it, edit it using the editing keys, and enter or 
execute it agaiu. 

Type: 

PRINT 11111 I EXECUTE i 

to print the number 1 on the screen. Now press 'RECALL I to recall 
the PRINT statement. Edit the statement to print the number 2 

by positioning the cursor under the 1 and typing m over it. Press 
I EXECUTE I again. Now press I RECALL I several times to see all of the 
statements it remembers. Then press I CLR SCR I when finished. 

I SHIFT H RECALL I moves forward through the recall stack. 

8-6 HP 98203B/C Kevboards 



IINS LN 1 

I DEL LN 1 

IINS CHR 1 

IINS LN 1 inserts a new line above the cursor's current position (edit mode 
only). 

Press I EDIT I, then I EXECUTE I. Type in this line (if it isn't already there): 

10 !FIRST LINE 

Now, with the cursor somewhere on iine 10, press IINS LN I. Notice that 
a new line number (1) is inserted before line 10. Press I PAUSE 1 when 
finished. 

I DEL LN 1 deletes the line containing the cursor (edit mode only). 

Press I EDIT I, then I EXECUTE I. Position the cursor to the line: 

10 !FIRST LINE 

and press I DEL LN I. The line is removed. To restore it, press I RECALL 1 to 
retrieve it, then I ENTER 1 to enter it into the program. Press I PAUSE 1 to 
exit edit mode. 

II NS CHR 1 sets insert mode, allowing you to insert characters to the left 
of the cursor. Press the key a second time to cancel insert mode. 

Carefully type the following lille exactly as shown: 

THIS IS A TEST . 

Position the cursor under the period and press IINS CHR I. Now type: 

OF INSERT MODE 

and press I INS CHR 1 again. The line should now look like this: 

THIS IS A TEST OF INSERT MODE. 

The new characters were inserted to the left of the period. Press I CLR LN 1 

w hen finished. 

HP 98203B/C Keyboards 8-7 



I DEL CHR I 

I SET TAB I 

I CLR TAB I 

I CLR LN I 

I CLR+END I 

8-8 

I DEL CHR I delete::; the character at tlH' cursur's posit iuu. 

Type a few words and experiment with I DEL CHR I, positioning the cursor 
at various plan>s on the line. Notice that if you hold the key down, 
characters are deleted until you release it. Delete all of the characters 
you typed. 

I SET TAB I (I SHIFT H RESULT I) s('ts a tab at the cursor's current position. 
Tabs remain in effect until cleared by either I CLR TAB I or the SCRATCH 
A statement. The SCRATCH command:;; are explainf'd in !1ASJ(, 
Programming Techniques. To demonstrate I SET TAB 11 see I TAB I. 

I CLR TAB I (I SHIFT H PRT ALL I) clears a tab previously set at the cursor 1s 
position. To demonstrate I CLR TAB I, see I TAB I. 

I CLR LNJ clears the keyboard line and message/results line. 

Type a few words and press I CLR LN I to clear them. 

I CLR+END I clears from the current cursor position to the end of the line. 

Type in a few words and use the cursor control wheel or G to position 
the cursor in the middle of the line. Press I CLR+END I to clear to the end 
of the line. Press I CLR LN I to clear the rest of the line. 



System Control Keys 

These keys control various system functions related to the display, printer, and editing 
operations. Most of these keys execute their functions immediately, as the key is pressed. 

I DISPLAY FCTNS 1 

I ALPHA 1 

I GRAPHICS 1 

I DUMP ALPHA 1 

I EDIT 1 types the EDIT command on the keyboard line. See the 
Editing Keys section for more information. 

I DISPLAY FCTNS 1 (I SHIFT H EDIT I) sets the display-functions mode, al­
lowing you to see special control characters (e.g., form-feed, carriage 
return) on the screen. Pressing this key a second time cancels the 
display-functions mode. 

Type the following line: 

PRINT "DISPLAY-FUNCTIONS MODE OFF" I EXECUTE 1 

Notice the display at the top of the screen. Now press I RECALL 1 to 
recall the line, and edit it to read: 

PRINT "DISPLAY-FUNCTIONS MODE ON" 

Press the I DISPLAY FCTNS 1 key, and then press I EXECUTE I. Notice that 
the carriage return (CR) and line-feed (LF) control characters are 
now displayed. Press I DISPLAY FCTNS 1 again to exit display-functions 
mode. Press I CLR SCR 1 when finished. 

I ALPHA 1 and I GRAPHICS 1 allow you to turn the alpha and graphics 
display modes on and off. The GRAPH binary must be loaded for 
these keys to function. 

The I DUMP ALPHA 1 (I SH I FT H ALPHA I) key prints a complete copy of the 
alpha display on the default printer. 

HP 98203B/C Keyboards 8-9 



I DUMP GRAPHICS I The I DUMP GRAPHICS I (I SHIFT H GRAPHICS I) key prints a complete copy 
of the graphics display on the default printer. The GRAPH binary 
must be loaded for this key to function. 

I STEP I I STEP I allows the programmer to step through a program, one line at 
a time. Using the I STEP I key to debug programs is covered in BASIC 
Programming Techniques. 

I ANY CHAR I I ANY CHAR I ([]BJTI}I STEP I) is used to find any ASCII character. First 
press I ANY CHAR I. Then enter a thrpe-digit number from 000 through 
255 representing the decimal equivalent of an ASCII character. The 
computer automatically displays the character on the screen. For 
a list of characters and their equivalent decimal values, see the US 
ASCII Character Codes table in the "Useful Tables" appendix of the 
BASIC Language Reference. 

I CLR scR] 

I RESULT I 

Press I ANY CHAR I, then type 65 which is the decimal equivalent of 
"A". The "A" is now displayed in the keyboard line. Press I CLR LN I 
to erase it. 

I CLR SCR I (I SH I FT H CLR LN I) clears the entire alpha screen. 

Type the following BASIC command: 

PRINT "PUT THIS MESSAGE IN THE OUTPUT AREA." 

Now press I EXECUTE I to execute it. Press I RECALL I to recall the 
command and press I EXECUTE I again. Repeat this step several times 
to fill the screen with messages. Now press I CLR SCR I to erase all 
lines at once. 

I RESULT I returns the result of the last arithmetic expression that was 
executed. 

Press I CLR LN I, then type: 

23+45 I EXECUTE I 

The result, 68, is displayed in the lower-left corner of the screen. To 
add 123 to this value, type: 

I RESULT I +123 I EXECUTE I 

The new result, 191. is now displayed. Press I CLR LN I when finished. 

8-10 HP 98203BjC Keyboards 



I PRT ALL I 

Softkeys 

The I PRT ALL I key turns the print all mode on and off, allowing keyboard 
operations and displayed error messages to be copied to a print all device. 
Press I PRT ALL I once to set printall "on" and again to set printall "off". 
The print all mode is displayed in the lower-left corner of the screen. 

The screen's output area is the default print all device. Selecting an 
external print all device is explained in BASIC p.rogra-;nrning Techniques. 

Press I PRT ALL I to turn on print all mode. N ow type in the following 
command: 

PRINT "THIS IS A KEYBOARD OPERATION" I EXECUTE I 

Both the PRINT command and the message itself are displayed on the 
screen, which is the default print all device. Now type: 

THIS WILL CAUSE AN ERROR I EXECUTE I 

Because this is not an executable BASIC statement, an error message is 
displayed, both at the bottom of the screen and in the print all area at 
the top. This way, a log is produced of all commands typed and executed 
at the keyboard, along with any error messages. Press I CLR SCR I to clear 
the screen, and press I PRT ALL I to turn off print all mode. 

The ten keys labeled CEQ] through [E[) are defined under program control. The program 
may also display a label for each defined key. Pressing a defined key tells the computer 
to interrupt whatever it's doing and start running another part of the program. 

We call these keys "softkeys" because the program or "software" defines and labels them. 
Another ten soft keys (without the displayed labels) can be defined at the same time and 
accessed with the I SHIFT I key. These shifted softkeys are often referred to as k10 through 
k19. 

With KBD language extension binary loaded, softkeys are defined as typing aids. 

HP 98203B/C Keyboards 8-11 



Program Control Keys 

The key::; ::;hOWll belo\Ai allow you to control ex(-'('utioll of thE:' program t'itored 1Il til<' 
computer's memory. 

[@[] 

I PAUSE 1 

I CONTINUE 1 

i RESET I 

I CLR 1/01 

[@[] starts a program running from th(' beginning. 

I PAUSE 1 pauses program execution after the current line. It is also used 
to exit the Editor. 

I CONTINUE 1 resumes program execution from the point where it was 
paused. It is also used like I ENTER 1 or I EXECUTE 1 to respond to a program 
prompt. 

I STOP 1 ([]8IITJ-1 CLR 1/0 I) stops program execution after the current line. 
TTnlike! PAUSE I. yon cannot reSnIll<' execution of a program stopped with 
I STOP 1 by pressing I CONTINUE I. To restart the program, use the I RUN 1 
key. 

fRESETl (! SHiFT H PAUSE J) stops program executicHl immediately without 
erasing the program from memory. The BASIC Reset message indicates 
the computer is ready for your command. 

I CLR 1/01 pauses program execution when the computer is performing or 
trying to perform an I/O operation. Press I CLR 1/01 instead of I PAUSE 1 

when the computer is hung up on an I/O operation, since I PAUSE 1 works 
only after the computer finishes the current program line. Pressing 
I CLR 1/0 I cancels the I/O operation and pauses the program at the 
current line. 

8-12 HP 98203B/C Keyboards 



Task/Topic 

Character entry keys 

Cursor-control keys 

Editing keys 

I 
System control keys 

. Softkeys 

Where to Go 
for Details 

9-2 

9-4 

9-5 

9-8 

9-10 



HP 98203A Keyboards 9 
If you have an ITF or an HP 98203B/C keyboard, ignore this chapter and refer to one 
of the two preceding chapters. 

The keys on the HP 98203A keyboard are arranged into the following functional groups: 

Cursor Wheel} 
(Knob) 

Softkeys . 

o 
Cursor 

Control Keys 
~ 

" ALPHA 

, , , , , 
I 

Character 
Entry Keys 

Editing 
Keys . 

System 
Control Keys 
.~ 

/ 
/ 

/ 

Figure 9-1. HP 98203A Keyboard 

HP 98203A Keyboards 9-1 



This chapter provides a handy reference guide to BASIC's key definitions for the 
HP 98203A keyboard. Keep in mind that other system programs may define the keys 
differently. Each key will be demonstrated where possible. One point to clarify: the 
cursor that we refer to in the following paragraphs is the blinking-underline that points 
to a location on the screen. 

Note 

Before you proceed, type: 
SCRATCH I EXEC I 

This clears the computer of any programs that might be left in 
memory from previous demonstrations. 

Character Entry Keys 

ImBBBBBDiilSJBJiiimElm 
BIIIIII •••• II .... Ili£i 
II • a II a a.a III1R 1:1. C! 

•• 1111111111.1111 •• 111= 
_.all.all •••• _~ ----_ .. 

The character entry keys are arranged like a typewriter, but have some added features. 

The I CAPS 1 key sets the unshifted keyboard to either upper-case (which 
IS the default after BASIC is booted) or lower-case (normal typewriter 
operation). The computer displays which mode the computer is in when 
you press the I CAPS 1 key. 

Type a few words, then press I CAPS I and continue typing. Notice the 
case change. Press I CLR L 1 when finished. 

You can ent~r standard upper-case and lower-case letters, using the 
I SHldJ key to access the alternate case. 

Type a few words, pressing I SHIFT 1 to change the case of the first letter 
of each word. Now press I CAPS 1 and continue typing. Notice that the 
alternate case accessed by I SH I FT 1 depends on the setting of I CAPS I. Press 
I CLR L I when finished. 

9-2 HP 98203A Keyboards 



I ENTER 1 The I ENTER 1 key has several functions: 

• When a running program prompts you for data, you respond by typing 
the requested data and then pressing I ENTER I. This signals the program 
that you have provided the data and that it can resume execution. The 
I EXEC 1 key can also be used for this function. 

• When typing in lines of a program, the I ENTER 1 key is used to store each 
line of program code. The []Eill key can also be used for this function. 

• Like the I EXEC 1 key, the I ENTER 1 key can be used to execute commands 
and calculations. 

Type EDIT and press I ENTER I. Notice the number 10 now displayed on 
the screen-this is the line number of the first line of a BASIC program .. 
The computer is waiting for you to type in the line. Type: 

!FIRST LINE 

and press I ENTER I. Notice that the computer accepts the statement as 
a program line and displays 20 in preparation for the next one. Press 
I PSE I to exit. 

The I TAB 1 key moves the cursor forward to preset tabs. Pressing I SHIFT ~ 

I TAB 1 moves the cursor back to preset tabs. 

Before I TAB 1 can be used, a tab must be set. Press the space bar to move 
the cursor forward a few spaces and press I SET T I. Move the cursor back 
several spaces using G, then press I TAB I. Move the cursor forward 
several more spaces with the space bar, then press I SHIFT H TAB I. To 
clear the tab, move the cursor to the unwanted tab position and press 
I CLR T I. 

The I CTRL 1 (control) key works like I SH I FT I to access a set of standard 
control characters, such as line-feed and form-feed. These characters 
are useful to the programmer for controlling some devices and for 
communicating with other computers. You probably won't need them 
when running programs. The available control characters are listed in 
the "Useful Tables" appendix of BASIC Language Reference. 

HP 98203A Keyboards 9-3 



Cursor-Control Keys 

mBDllmaallEllilliliill 
IID811BBIIRBliBBaEl 

II 11111111 a III a II 111111111 
lIaaDIIIIIIIIIIIIIIB8I11 
ma lEI II 1'1 a III m .B._II ----_ .. 

The cursor-control keys move the display cursor. The [!J and [}] keys allow you to 
scroll lines in the output area up and down. The G and G keys allow you to move 
horizontally along a line. The I BACK SPACE 1 key works just like the G key. 

The cursor control wheel (also called the knob) allows you to rapidly scroll the output 
area up and down or move the cursor left and right, depending on the I SHIFT 1 key. With 
the I SHIFT 1 key pressed, the knob scrolls the output area up and down. Without the 
I SHIFT 1 key pressed, the knob moves the cursor left and right. 

To test the horizontal movement of the cursor, type a few words and press the G and 
G keys. Notice that the cursor cannot be moved beyond the characters you have typed. 
Now rotate the wheel to move the cursor. Press I CLR L 1 when finished. 

To test vertical scrolling, type EDIT and press I EXEC I. Now type the following lines, 
pressing I ENTER 1 after each line (the first line may be there already, so just press I ENTER 1 

to accept it): 

10 !FIRST LINE 
20 !SECOND LINE 
30 !THIRD LINE 
40 !FOURTH LINE 

Now, press I SHIFT 1 and rotate thr knob to scroll the trxt up and down. Also tryout the 
[!J and [}] keys. When you're done, press IpSE 1 to exit. 

9-4 HP 98203A Keyboards 



Editing Keys 

SHImH~OO •• EI.II£ifi 
BD990ROBIfIRB"'!1B 
a a II II II a II II Eii iii II DI a 

lIaaaaaalll:lllllll!idmm 
mgglillEJllmmllllll_rI _ .. ___ III II 

The editing keys put easy character editing and line editing at your fingertips. Some of 
these keys only work when you are in edit mode, which is entered by typing: 

EDIT I EXEC 1 

Edit mode is described in detail in BASIC Programming Techniques. To exit edit mode, 
press I PSE I. 

The I RCL 1 key recalls the last line that you entered, executed, or deleted. 
Several previous lines can be recalled this way. I RCL 1 is particularly 
handy to use when you mi~type a line. Instead of retyping the entire 
line, you can recall it, edit it using the editing keys, and enter or execute 
it again. 

Type: 

PRINT "1" I EXEC 1 

to print the number 1 on the screen. Now press I RCL 1 to recall the PRINT 
statement. Edit the statement to print the number 2 by positioning the 
cursor under the 1 and typing rn over it. Press I EXEC 1 again. Now press 
I RCL 1 several times to see all of the statements it remembers from the last 
entered to the earliest entered. Then press I SHIFT H RCL 1 several times 
to review the statements from the earliest to the last. Press I CLR S 1 to 
exit. 

HP 98203A Keyboards 9-5 



[ill[I) inserts a new line above the cursor~s current position (edit mod(' 
only). 

Type ED IT I EXEC I. Then, type in this line (if it isn't already there): 

10 !FIRST LINE 

Now, with the cursor somewhere on line 10, press [ill[I). Notice that a 
new line number (1) is inserted before line 10. Press IpSE 1 to exit. 

I DEL L 1 (I SHIFT ~[ill[I)) deletes the line containing the cursor (edit mode 
only). 

Type EDIT I EXEC I. Position the cursor to the line: 

10 !FIRST LINE 

and press I DEL L I. The line is removed. To restore it, press I RCL 1 to 
retrieve it, then I ENTER 1 to enter it into the program. Press IpSE 1 to exit 
edit mode. 

~ sets insert mode, allowing you to insert characters to the left of 
the cursor. Press the key a second time to cancel insert mode. 

Carefully type the following line exactly as shown: 

THIS IS A TEST . 

Position the cursor under the period and press~. Now type: 

OF INSERT MODE 

and press ~ again. The line should now look like this: 

THIS IS A TEST OF INSERT MODE. 

The new characters were inserted to the left of the period. Press I CLR L 1 

when finished. 

I SET T I (I SHIFT ~~) sets a tab at the cursor's current position. Tabs 
are in effect for the keyboard line until cleared by either I CLR T I or the 
SCRATCH A statement. The SCRATCH commands are explained in 
BASIC Programming Techniques. To demonstrate I SET T I, see I TAB I. 

I CLR T 1 (I SH I FT H DEL C I) clears a tab previously set at the cursor's 
position. To demonstrate I CLR T I, see I TAB I. 

9-6 HP 98203A Keyboards 



I CLR S 1 

I DEL C 1 deletes the character at the cursor's position. Type a few words 
and experiment with I DEL C I, positioning the cursor at various places on 
the line. Notice that if you hold the key down, characters are deleted 
until you release it. Delete all of the characters you typed. 

I CLR L 1 clears the keyboard line and message/results line. Type a few 
words and press fCLRD to dear them. 

[CiJ[Sl (I SHIFT H CLR L I) clears the entire alpha screen. 

Type the following BASIC command: 

PRINT "PUT THIS MESSAGE IN THE OUTPUT AREA." 

Now press I EXEC 1 to execute it. Press I RCL 1 to recall the command and 
press I EXEC 1 again. Repeat this step several times to fill the screen with 
messages. Now press I CLR S 1 to erase all lines at once. 

HP 98203A Keyboards 9-7 



System Control Keys 

BBSIIIIHBIIElIiEBIi •• 
.. HBRRIIBIiIIBBIiEi. 
a m II II II II 111111 II 11111_ 

.aBDallaIlDIIIIB". 
_alllllloaall ..... _____ 11. 

The keys on the right-hand side of the keyboard control various system functions related 
to the display, printer and editing operations. Most of these keys execute their functions 
immediately, as the key is pressed. 

I ANY C 1 

I PRT ALL 1 

I STEP 1 allows you to step through a program, one line at a time. Using 
the I STEP 1 key to debug programs is covered in BASIC Programming 
Techniques. 

I ANY C 1 ([]8ill}1 STEP I) is used to find any ASCII character. First 
press I ANY C I. Then enter a three-digit number from 000 through 
255 representing the decimal equivalent of an ASCII character. The 
computer automatically displays the character on the screen. For a list 
of characters and their equivalent decimal values, see the US ASCII 
Character Codes table in the "Useful Tables" appendix of the BASIC 
Language Reference. 

Press I ANY C I, then type 65 which is the decimal equivalent of "A". The 
"A" is now displayed in the keyboard line. Press I CLR Lito erase it. 

I RST 1 (I SHIFT H PSE I) stops or resets program execution immediately 
without erasing the program from memory. The BASIC Reset message 
indicates the computer is ready for your command. 

I PRT ALL 1 (I SHIFT H ENTER I) key turns the printaU mode on and off, 
allowing keyboard operations and displayed error messages to be copied 
to a printall device. Press I PRT ALL 1 once to set printall "on" and again 
to set print all "off". The printall mode is displayed in the lower-left 
corner of the screen. 

9-8 HP 98203A Keyboards 



The screen's output area is the default printall device. Selecting an 
external printall device is explained in BASIC Programming Techniques. 

Press I PRT ALL 1 to turn on printall mode. N ow type in the following 
command: 

PRINT "THIS IS A KEYBOARD OPERATION" I EXEC 1 

Both the PRINT command and the message itself are displayed on the 
screen, which is the default printall device. Now type: 

THIS WILL CAUSE AN ERROR IEXECI 

Because this is not an executable BASIC statement, an error message 
is displayed, both at the bottom of the screen and in the print all area 
at the top. This way, a log is produced of all commands typed and 
executed at the keyboard, along with any error messages. Press @O!JLO§J 
to clear the screen, and press I PRT ALL 1 to turn off printall mode. 

I RUN 1 starts a program running from the beginning. 

IpSE 1 pauses program execution after the current line. When in edit 
mode, IpSE 1 causes the computer to exit edit mode. Some BASIC 
keyboard commands cannot be executed while a program is running. In 
this situation, you can press IpSE 1 to suspend program execution, type 
and execute your keyboard command, then resume the program with 
the I CaNT 1 key (described next). (There are some keyboard commands 
which will not allow a program to be resumed.) 

I CaNT 1 resumes program execution from the point where it was paused. 
It is also used like I ENTER 1 or I EXEC 1 to respond to a program prompt. 

@JZQJ pauses program execution when the computer is doing an I/O 
operation. Press @JZQJ instead of IpSE 1 when the computer is hung up 
on an I/O operation, since IpSE 1 works only after the computer finishes 
the current program line. Pressing @JZQJ cancels the I/O operation 
and pauses the program at the current line. 

I STOP 1 (I SHIFT ~@JZQJ) stops program execution after the current line. 
Unlike I PSE I, you cannot resume execution of a program stopped with 
I STOP 1 by pressing I CaNT I. To restart the program from the beginning, 
use the I RUN 1 key. 

HP 98203A Keyboards 9-9 



Softkeys 

••••• OHIIS.Eliili§i1f 
IIHIIIIRIiBRlIl1a.ea 

D a II II a a 111111111111111 
lIlaamarlllllll ••• Bla 
... 1111 II II III m_lIlI_ II _____ 1111 

The ten keys labeled [EQJ through [E) (using the I SH I FT I key) and [![] through [E[] are 
defined under program control. The program may also display a label for each defined 
key. Pressing a defined key tells the computer to interrupt whatever it's doing and start 
running the designated part of the program. 

We call these keys "softkeys" because the program or "software" defines and labels them. 

With the KDB language extension binary loaded, softkeys can be used as typing aids. 

9-10 HP 98203A Keyboards 



Where to Go 
Task/Topic for Details 

98616A BASIC Language System Software 10-1 

Disc Media Options 10-1 

Disc Labels and Part Numbers 10-2 

Disc Contents 10-3 

BASIC 5.1 System Disc 10-3 

BASIC 5.1 Language Extensions Disc 10-4 

BASIC 5.1 Drivers Disc 10-5 

BASIC Utilities 1 Disc 10-6 

BASIC Utilities 2 Disc 10-7 

BASIC HFS Utilities Disc 10-8 

BASIC Manual Examples Disc 10-9 



BASIC 5.1 Disc Contents 10 
This chapter discusses the contents and part numbers of the discs that come with your 
system. 

HP 98616A BASIC Language System Software 
The following tables list the media options and corresponding discs supplied with the 
BASIC 5.1 system. Subsequent sections list and describe the files on each disc. 

Disc Media Options 
There are three media (disc) options available with the BASIC 5.1 system: 

• Option 045: Double-sided, 31h-inch flexible discs 

• Option 044: Single-sided, 31h-inch flexible discs 

• Option 042: Single-sided, 51/4-inch flexible discs 

BASIC 5.1 Disc Contents 10-1 



Disc Labels and Part Numbers 
Here are the disc labels and part numbers for each media option. 

Single-Sided Discs Double-Sided Discs 

BASIC 5.1 System Disc BASIC 5.1 System Disc 
(98616- lOpOO I ) (98616-10500 ) 

BASIC 5.1 Language Extensions BASIC 5.1 Drivers and Language Extensions 
(98616-lOp01 1 ) (98616-10501) 
BASIC 5.1 Drivers Disc 
(98616-lOp021 

) 

BASIC 5.1 Utilities Disc 1 BASIC 5.1 Utilities Disc 
(98616-lOp051 

) (98616-10502) 
BASIC 5.1 Utilities Disc 2 
(98616-lOp041 

) 

BASIC 5.1 HFS Utilities BASIC 5.1 HFS Utilities 
(98616-lOp05) (98616-10503) 

BASIC 5.1 Manual Examples Disc BASIC 5.1 Manual Examples Disc 
(98616-lOp061 

) (98616-10504 ) 

1 The "p" in this suffix changes according to media option: a "2" indicates 5 1/4-inch single-sided discs; 
a "4" indicates 3 1h-inch single-sided discs. For instance, the 5 1/4-inch single-sided "System" disc is 
98616-10202, while the 3 1/2-inch single-sided "System" disc has part number 98616-10402. 

10-2 BASIC 5.1 Disc Contents 



Disc Contents 
The following disc file lists show the single-sided disc contents, not double-sided disc 
contents. You should not have any problems, however, since the double-sided discs have 
labels that reflect the labels of both single-sided discs. For instance, the contents of the 
single-sided "Utilities I" and "Utilities 2" discs are on the double-sided "Utilities" disc. 

Each disc contains a file called REVID. This file has information such as copyright and 
revision number in it. 

BASIC 5.1 System Disc 

File Name Description 

SYSTEM_BA5 the "core" BASIC system; a bootable file containing a minimum language 
system 

AUTOST a program run automatically at boot time that loads BASIC binaries 

REVID a file with copyright and revision information 

BASIC 5.1 Disc Contents 10-3 



BASIC 5.1 Language Extensions Disc 

File Name 

CLOCK 

COMPLEX 

CRTX 

EDIT 

ERR 

GRAPH 

GRAPHX 

10 

KBD 

LEX 

MAT 

MS 

PDEV 

TRANS 

XREF 

REVID 

Description 

a binary that provides increased time and date capability 

a binary that adds complex math functions, hyperbolic functions, and the 
complex data type 

a binary that provides several CRT display "eXtended" capabilities 

a binary that provides an editing environment for BASIC programs 

a binary that extends BASIC error messages to include an English expla­
nation of the error 

a binary that provides graphics capability 

a binary that extends "GRAPH" by providing graphics input, color plot­
ting, and area filling capabilities 

a binary that provides increased Input/Output (I/O) capability 

a binary that provides increased keyboard and softkey capability and HP­
HIL access 

a BIN file that causes KNOBX to function as it does in BASIC 2.0/2.1. 
Only load KNB2_0 if you want KNOBX to function in 2.0/2.1 mode. Refer 
to the Knob section in "Porting to 3.0", BASIC Programming Techniques 
for more information 

a binary that provides lexical order capability and non-U.S. keyboard 
support 

a binary that provides increased array and matrix capabilities 

a binary that provides increased mass storage capability 

a binary that provides increased program development capability 

a binary that provides background Input/Output transfer capability and 
the use of BUFFERs 

a binary that provides a cross reference capability 

a file with copyright and revision information 

10-4 BASIC 5.1 Disc Contents 



BASIC 5.1 Drivers Disc 

File Name 

BCD 

BUBBLE 

CONFIGURE 

CRTA 

CRTB 

CS80 

DCOMM 

DISC 

EMULATIONS 

EPROM 

FHPIB 

GPIO 

HPIB 

HFS 

HP9885 

SERIAL 

SRM 

REVID 

RENAME_BT 

Description 

a binary that provides the interface driver for the HP 98623 Binary Coded 
Decimal interface 

a binary that provides the device driver for HP 98259 BUBBLE Memory card 

a program that helps you configure the system 

a binary that provides the device driver for non-bit-mapped displays. This 
binary is also included in the SYSTEM_BA5 file 

a binary that provides the device driver for bit-mapped displays. This binary 
is also included in the SYSTEM_BA5 file 

a binary that provides the device driver for CS/80 and SS/80 type discs 

a binary that provides the interface driver for the HP 98628 Datacomm and 
HP 98629 SRM interfaces 

a binary that provides the device driver for non-CS/80 external disc drives 

an interactive program that creates an autostart program that enables you 
to specify compatibility options 

a binary that provides the device driver for HP 98255 Erasable Programmable 
Read Only Memory cards 

a binary that provides the device driver for HP 98625 High-speed disc 
interface 

a binary that provides the interface driver for HP 98622 General Purpose 
Input/Output interface 

a binary that provides the interface driver for the internal HPIB or the 
HP 98624 HP-IB interface 

a binary that provides a Hierarchical File System and a few statements for 
managing files 

a binary that provides the device driver for HP 9885 flexible disc drives 

a binary that provides the interface driver for the HP 98626 RS-232 Serial 
Interface 

a binary that provides a driver and statements for SRM (Shared Resource 
Manager) systems 

a file with copyright and revision information 

utility to rename or purge the directory entries in the LIF boot boot area of 
an HFS disc 

BASIC 5.1 Disc Contents 10-5 



BASIC Utilities 1 Disc 

File Name Description 

PHYREC a set of CSUBs that allows bit-by-bit copies between a real array and a 
mass storage media 

DUMP a program that dumps a specific record from a disc 

MASS_STaR a program that provides several mass storage functions 

CAT a subprogram that reads the disc directory 

INFO a subprogram that returns directory information for a specific file 

CREATE a subprogram that creates a file at a specific location on the disc 

INITIALIZE a program that initializes a disc with a specific volume label and directory 
size (useful for modifying the default directory size of hard discs, for 
example); LIF format only 

VERIFY_LIF a program that determines if a volume meets HP LIF standards 

CBACKUP a program that backs-up the contents of a flexible disc that meets HP LIF 
standards 

FBACKUP a program that backs-up selected files of a flexible disc that meets HP LIF 
standards 

TAPEBACKUP a program that backs-up a CS/80 disc onto a DC600 or DC150 tape 
cartridge or recovers data from a tape cartridge to a CS/80 disc 

MEM_UTILS provides 5 memory resident, softkey-accessed utility subprograms for file 
management and editing 

INTERFACES a program that lists the interface cards currently installed in the computer, 
and shows whether the corresponding BASIC driver is currently loaded 

HFSDISC a subroutine loaded by several utilities to detect HFS media 

VERIFY a program that allows you to label peripheral devices (disc drives, printers, 
plotters, etc.), verify their proper operation, and sometimes to see example 
BASIC statements used to access them 

REVID a file with copyright and revision information 

10-6 BASIC 5.1 Disc Contents 



BASIC Utilities 2 Disc 

File Name 

LISTER 

82905DUMP 

LEX_AID 

GERMAN 

FRENCH 

SPANISH 

SWEDISH 

FILE_STAT 

RS232_STAT 

GPIO_STAT 

SYSTEM_LD 

CONFIGER 

CONFIG_CHK 

GDUMP_R 

GDUMP_C 

BPLOT 

BACKUP 

VME_DRIVER 

VME_TEST 

REVID 

Description 

a program that lists the contents of ASCII files 

a subprogram that dumps a graphics display to an HP 82905B printer 

a program that aids in creating lexical order tables you define 

a file that contains default lexical order tables for German 

a file that contains default lexical order tables for French 

a file that contains default lexical order tables for Spanish 

a file that contains default lexical order tables for Swedish 

a program that displays the contents of the status registers of an ASCII or 
BDAT file 

a program that displays the contents of the HP-IB interface's status 
registers 

a program that displays the contents of the RS232 interface's status registers 

a program that displays the contents of the GPIO interface's status registers 

a SYSTM file that contains the LOADER system 

a program that creates the CONFIG file for the Loader 

a program that lists the CONFIG file 

a CSUB that performs a raster "graphics dump" to a printer (rotated 90°, 
but not expanded) 

a CSUB that performs a color raster "graphics dump" to a PaintJet printer 

a file containing CSUBs (Bstore and Bload) that store and load rectangular 
blocks of raster data in an integer array 

a program that allows you to make back-up copies of files and/or volumes. 
It is useful because it allows wildcards in file names, and can perform 
"incremental" back-ups (for instance, you can back-up all files modified 
since a specific date) 

a CSUB library that provides access to the HP 98646A VME interface 

a program that uses VME_DRIVER to perform a simple test of the 
HP 98646A VME interface 

a file with copyright and revision information 

BASIC 5.1 Disc Contents 10-7 



BASIC HFS Utilities Disc 

File Name Description 

DISC_UTIL a collection of utilities: show on-line mass storage devices, initialize a disc, 
store BASIC system and binaries, check consistency of an HFS volume, and 
call the BACKUP/RESTORE utility 

REVID a file with copyright and revision information 

10-8 BASIC 5.1 Disc Contents 



BASIC Manual Examples Disc 

File Name Description 

Activate demonstrates how to turn the function box status light on and off with the 
HIL SEND command 

Animation demonstrates color map animation 

BACKGROUND demonstrates color map definition, non-dominant drawing, three-dimen-
sional transformations, and knob interaction 

BAR_KNOB demonstrates the use of the knob to control dynamic displays 

Bar _code provides a program that allows you to read bar codes 

Button_box provides an example for using the buttons on a function box to cause 
interrupts that are trapped and to set processes in motion 

CDials demonstrates the use of "Control Dials" (9-knob) box 

CIRCLES shows that the color map can be defined to simulate an additive color 
scheme, a subtractive color scheme, or any arbitrary color scheme 

CScale demonstrates how to generate notes in the C musical scale using the built-in 
tone generator 

CharCell shows the relationship between the actual character size and the character 
cell size 

Contour a demonstration of a random contour map 

Csize demonstrates how to use the CSIZE statement to change the size of the 
character cells into which labelled characters are placed 

DITHER_PAL a program that creates a palette for dithering (for color monitors) 

DumpGraph takes an image from the frame buffer of a monochromatic CRT and sends 
it to an HP 82905A printer 

Gdu a subprogram that allows graphic display units instead of user defined units 

Gray _Map accepts a two-dimensional array and plots a gray map from it 

Gstore demonstrates the use of GSTORE and GLOAD in quickly replotting the 
unchanging part of an otherwise dynamic image 

HIL_ID provides a means for determining which HP-HIL devices are on your HP­
HIL link and gives information about them 

ID_MODULE a program that decodes an ID Module's contents 

BASIC 5.1 Disc Contents 10-9 



BASIC Manual Examples Disc (Continued) 

File Name 

InputSong 

Iplot 

Label 

Ldir 

Leml 

Lem2D 

Lorg 

MARQUEE 

MuLpress 

MultLdev 

NEW_MODELS 

OdeToJoy 

Pause 

Pen 

Pie_Chart 

RIPPLES 

Description 

shows a simple "music editor" program that defines keys on the keyboard 
to produce musical notes 

uses incremental plotting to create characters for plotting labels in a user­
defined character set 

a pictoral menu program that supports touchscreen and HP-HIL tablets, 
mice, etc. 

defines several system variables (in CSIZE, LDIR, etc.) and labels text 
accordingly 

demonstrates how the LDIR statement allows labelling of text on the 
graphics screen at any desired angle 

a demonstration of a lunar lander drawing 

demonstrates the four basic two-dimensional graphics transformations: 
translation, rotation, scaling and shearing 

demonstrates how the LORG statement allows centering or cornering of 
labels in both the X and Y directions 

uses color-map animation to create a movie marquee announcing the coming 
attractions 

provides an example for mapping multiple key presses from a function box 

demonstrates how end-of-line interrupts can be handled when they come 
from more than one HP-HIL device 

provides a physical model to relate parameters of the HSL model (Hue, 
Saturation, and Luminosity) 

an example data file containing musical notes in the song "Ode to Joy" , that 
can be read and played with the InputSong program (also on this disc) 

a subprogram to pause and continue graphics output 

demonstrates drawing modes on monochromatic CRTs 

accepts pie chart data up to fourteen segments, each with its own label, 
plus title and subtitle 

color map animation with concentric circles 

10-10 BASIC 5.1 Disc Contents 



BASIC Manual Examples (Continued) 

File Name 

Rplot 

STEREO 

STORM 

Scale 

Scenery 

Show 

SinAxes 

SinGrdAxes 

SinLabel 

SinLabel2 

SinViewprt 

SoundArray 

SoundInstr 

Surface 

Symbol 

FONT_ED 

REVID 

Description 

uses RPLOT statement to move subpictures, PIVOT to rotate them, and 
AREA INTENSITY to define shading 

a program to calculate the correct cursor and text color when you set a 
background color 

uses non-dominant drawing and three-dimensional transformations to dis­
play red-blue stereo images which can be viewed through bi-colored glasses 

demonstrates the use and speed of color map animation. A little house on 
the prairie is besieged by a thunderstorm 

scales a matrix to fit a new minimum and maximum 

uses POLYGONS, POLYLINES, RPLOTS, and area fills to create an idyllic 
scene of rustic simplicity 

simulates the system command SHOW 

part of the "Progressive Example" in Graphics Techniques. Axes are added, 
along with labels at appropriate points along, them 

demonstrates grids and axes; used in Graphics Techniques to display grids 
and axes in the same program 

part of the "Progressive Example" in Graphics Techniques. Labels are 
plotted after having used CSIZE, LORG and LDIR 

similar to SinLabel except that it draws a· "bold" label 

part of the "Progressive Example" in Graphics Techniques. A viewport is 
defined using GDU measurements of the screen 

generates sounds (melody and percussion) by reading data into an array 
and sending the values to a SOUND statement 

lets you experiment with SOUND statement parameters 

draws a surface represented by a two-dimensional array 

demonstrates how to define and label user-defined characters with the 
SYMBOL statement 

demonstrates how the Touchscreen can be used to locate points on your 
screen 

lets you create, edit, and store custom character fonts (usable on machines 
with "bit-mapped alpha" displays) 

a file with copyright and revision information 

BASIC 5.1 Disc Contents 10-11 



Notes 

10-12 BASIC 5.1 Disc Contents 



Index 

a 
ASCII file .......................................................... 5-9, 5-31 
A vailable memory, determining ............................................ 2-5 

b 
I Backspace I key .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-4 
Bad sector scan ......................................................... 3-17 
BASIC Keyboard overlays ................................................. 7-2 
BDAT file ..................................................... 5-9, 5-22, 5-31 
BIN file ................................................................ 5-22 
Binaries, determining current ............................................. 2-15 
Blank disc .............................................................. 3-16 
Booting problems ......................................................... 1-3· 
I Break I key .............................................................. 2-12 

c 
Calculations, keyboard .................................................... 2-4 
CAT ................................................................... 5-18 
CAT statement ................................................. 5-1, 5-2, 5-10 
Cataloging Individual PROG Files ....................................... " 5-19 
Cataloging Selected Files ................................................. 5-18 
Cataloging to a String Array ............................................ " 5-19 
Catalogs to External Printers, Sending ...................................... 5-2 
CHANGE command ................................................ 6-18,6-24 
Character entry keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-2, 8-2, 9-2 
CHECKREAD OFF statement ............................................ 5-40 
CHECKREAD ON statement ...... '" .................................... 5-40 
Choose a system ......................................................... 1-3 
~key .................................................... '" ...... 2-12 
Clear line .............................................................. 2-18 
Clearing a program ...................................................... 2-14 
Clearing the Computer ................................................. " 2-23 
I Clear line I key ............................................................ 6-8 
I CLEAR TAB I key .......................................................... 6-8 

Index 1 



Clock, Checking and Setting the System .................................... 2-5 
Clock compatibility with HP-UX ........................................... 2-5 
Closed files and hierarchical directories ..................................... 5-21 
I CLR+END I key ............................................................ 6-8 
I CLR 10 I key ............................................................ 2-12 
I CLR LN I key ........................................................ 2-18, 6-8 
Commands ...................................................... 2-4, 6-1, 6-2 
Commands vs. Program Lines, Statements as ................................ 6-2 
Commenting programs ................................................... 6-30 
Comments .............................................................. 6-27 
Compatibility, files ...................................................... 3-14 
Computer ............................................................... 1-2 
Computer, Clearing the .................................................. 2-23 
~key .............................................................. 2-12 
I CONTINUE I key .......................................................... 2-12 
Contrast Between Documented and Undocumented Programs ................. 6-28 
COpy statement ........................................................ 5-32 
Copying a file ........................................................... 5-32 
Copying an entire volume ................................................ 5-32 
Copying Files and Volumes ............................................... 5-32 
Copying HFS Files ...................................................... 5-34 
Copying LIF Files ....................................................... 5-33 
Copying lines (by changing line numbers) .................................. 6-12 
Copying Program Segments .............................................. 6-25 
Copying SRM Files ...................................................... 5-34 
COPYLINES command ........................................ 6-12,6-18,6-25 
Correcting Typing Mistakes ............................................... 6-4 
COUNT statement ...................................................... 5-18 
CREATE DIR statement ............................................. 5-9, 5-11 
CREATE statement ................................................. 5-9, 6-35 
Creating vi-compatible files ............................................... 6-35 
Criteria for choosing directory format ...................................... 3-14 
CRTA binary ........................................................... 2-16 
CRTB binary ........................................................... 2-16 
Current binaries, determining ............................................. 2-15 
Current line ............................................................. 6-7 
Current system devices, determining ....................................... 2-15 
Current working directory ............................................ 5-4. 5-21 
Current Working Directory, Changing the ................................... 5-6 
Cursor-Control keys .............................................. 7-5, 8-5. 9-4 

2 Index 



d 
DEF FN statement 4-7 
Default drive ........................................................... 2-15 
Default Volume .................................................. 5-1, 5-2, 5-5 
Default Volume, Changing the ......................................... 5-6, 5-7 
Default Volume; Specifying Files on the ..................................... 5-2 
DEL command .................... '" .................... '" ... " .. 6-18,6-26 
I DEL CHR I key ............................................................ 6-8 
I Delete char I key ........................................................... 6-8 
I Delete line I key ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-11 
Deleting and Recalling Lines .............................................. 6-11 
Deleting Multiple Lines .................................................. 6-26 
I DEL LN I key ............................................................ 6-11 
Device selector ........................................................... 5-2 
Device selector (in volume specifier) ........................................ 3-5 
Device type (in volume specifier) ........................................... 3-5 
Directories ............................................................. 3-16 
Directories and Files, Using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
Directories, hierarchical .................................................. 3-10 
Directories, Purging SRM ................................................ 5-38 
Directory ................................................................ 5-3 
Directory Access Permission, HFS ......................................... 5-24 
Directory, adding .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-8 
Directory, Creating Files and Other Directories within a ...................... 5-8 
Directory format, choosing ............................................... 3-13 
Directory formats (recommendations) ...................................... 3-13 
directory path .......................................................... 3-12 
Directory specifiers ....................................................... 5-3 
Directory structure: 

HFS ................................................................. 5-13 
LIF .................................................................. 5-13 
SDF ................................................................. 5-13 

Disc format, checking ..................................................... 3-9 
Disc format, choosing .................................................... 3-13 
Disc interleave .......................................................... 3-19 
Disc organization ......................................................... 3-1 
Disc sector size ......................................................... 3-18 
Disc sectors ............................................................ 3-18 
Disc volume size (flexible) ................................................ 3-18 
Discs, formatting ........................................................ 3-16 
Documented and Undocumented Programs, Contrast Between ................ 6-28 

Index 3 



Documenting programs .................................................. G-27 
Drive, default ........................................................... 2-15 
DUMP DEVICE IS statement ............................................ 2-15 
Dump device, system .................................................... 2-15 

e 
ED IT binary ............................................................ 6-3 
EDIT command ......................................................... 6-14 
I ED I T I key .............................................................. 2-17 
EDIT mode ..................................................... 2-7. 6-3.6-6 
EDIT mode, exiting the .................................................. 6-12 
EDIT Mode, More Details about Getting into ............................... 6-14 
Editing keys ..................................................... 7-7,8-6,9-5 
Editing Operations. Global ............................................... 6-18 
Editing programs ......................................................... 6-1 
Editing the Current Line, Keys Used for .................................... 6-7 
Enabling Checkread Verification ........................................... 5-40 
END statement ..................................................... 2-12, 4-7 
Entering programs ....................................................... 6-1 
Exclusive access of SRM Files ............................................. 5-31 
Extended character set .................................................... 7-4 
Extensible file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-12 
Extensible files ... :...................................................... 3-14 
Extent size ............................................................. 5-12 

f 
File Access Permission, HFS .............................................. 5-24 
File catalogs ............................................................ 5-13 
File compatibility ....................................................... 3-14 
File entries in directories (LIF) ............................................ 3-16 
File, extent size of a ..................................................... 5-12 
File management, general ................................................ 5-21 
File naIlle .......................................................... 3-1G. 5-3 
File names .............................................................. 3-2 
File names, listing ....................................................... 5-18 
File protection .......................................................... 5-21 
File size ................................................................ 3-16 
File specifier components .................................................. 5-3 
File specifiers ............................................................ 5-3 
File specifiers in mass storage statements ................................... 5-22 
Files and hierarchical directories. closed .................................... 5-21 

4 Index 



Files and hierarchical directories, open ..................................... 5-21 
Files and Other Directories within a Directory, Creating ...................... 5-8 
Files and Volumes, Copying .............................................. 5-32 
Files, Cataloging Selected ................................................ 5-18 
Files (description) ........................................................ 3-2 
Files, extensible ......................................................... 3-14 
Files, Finding and Specifying .............................................. 5-1 
Files on the Default Volume, Specifying ..................................... 5-2 
Files, Purging .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-35 
Files, Purging SRM ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-38 
Files, Renaming ......................................................... 5-34 
Files, Using Directories and ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
FIND command .................................................... 6-18, 6-22 
Finding Textual Patterns ................................................. 6-22 
FNEND statement ....................................................... 4-7 
Format, directory (recommendations) ...................................... 3-13 
Format of disc, checking ................................................... 3-9 
Format of disc, choosing ................................................. 3-13 
Format options (with INITIALIZE) ........................................ 3-18 
Formatting discs ........................................................ 3-16 

9 
GET statement .................................................. 4-1, 4-4, 4-5 
GET to Specify Run Line ................................................. 4-6 
GET with Automatic Program Clearing ..................................... 4-5 
Global Editing Operations ................................................ 6-18 

h 
HFS catalog contents: 

Access rights .................................................... 5-16, 5-17 
Data and Time ....................................................... 5-17 
Day and time ......................................................... 5-15 
File name ............................................................ 5-15 
File type ........................................................ 5-15, 5-17 
Group identifier ....................................................... 5-16 
Number of records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-15, 5-17 
Owner identifier ....................................................... 5-16 
Record length ......................................................... 5-17 
Record size ........................................................... 5-15 

Index 5 



HFS classes of users: 
GROUP ............................................................. 5-24 
OTHER .............................................................. 5-24 
OWNER ............................................................. 5-24 

HFS Directories and Files, Space Allocation for SRM and .................... 5-12 
HFS directories, Purging ................................................. 5-37 
HFS directories, storing .................................................. 5-12 
HFS Directory Access Permission ......................................... 5-24 
HFS directory format ............................................... 3-10, 3-13 
HFS directory structure .................................................. 5-13 
HFS file ................................................................. 5-3 
HFS File Access Permission .............................................. 5-24 
HFS Files, Copying ...................................................... 5-34 
HFS Files, Non-Contiguous Storage of SRM and ............................ 5-12 
HFS files, Purging ....................................................... 5-37 
HFS files, storing ........................................................ 5-12 
HFS hierarchical-directory volume .......................................... 5-7 
HFS permission bits ..................................................... 5-24 
HFS permissions: 

READ ............................................................... 5-25 
SEARCH .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-25 
WRITE .............................................................. 5-25 

HFS volume labels ...................................................... 5-39 
HFS volume overhead .................................................... 3-15 
Hieracrhical Directories, Creating and Using ................................. 5-7 
Hierarchical directories ................................................... 3-10 
Hierarchical directories, closed files ........................................ 5-21 
Hierarchical directories, open files ......................................... 5-21 
Hierarchical directory ..................................................... 5-4 
Hierarchical Directory Capabilities ........................................ 5-11 
Hierarchical organizations ................................................. 3-4 
Hierarchical-directory volume, HFS ......................................... 5-7 
Hierarchical-directory volume, SRM ........................................ 5-7 
Hierarchy, Example ....................................................... 5-7 
HP-UX clock compatibility ................................................ 2-5 
HP-UX file ............................................................. 5-22 
HP 46084 ID Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-32 
HP 9133 disc drive ........................................................ 5-6 
HP 98203A Keyboard ................................................. 2-3. 9-1 
HP 98203BjC Keyboard ................................................... 8-1 
HP 98203C Keyboard ..................................................... 2-3 

6 Index 



· I 
ID Module, HP 46084 .................................................... 6-32 
ID Module's Contents, Reading an ........................................ 6-32 
ID PROM, Reading an ................................................... 6-32 
INDENT command ............................................ 6-18, 6-19, 6-22 
Indentation Bounds ...................................................... 6-22 
Indentation, Removing ................................................... 6-22 
Indenting a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-19 
Indicators, program-status ................................................ 2-10 
Initialization ............................................................ 3-16 
INITIALIZE ............................................................ 3-16 
INITIALIZE statement .................................................. 5-39 
INPUT statement ....................................................... 4-14 
IINS CHR I key ............................................................ 6-8 
I I nsert char I key ........................................................... 6-8 
Inserting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-10 
I Insert line I key ........................................................... 6-10 
IINS LN I key ............................................................ 6-10 
Interleave, disc .......................................................... 3-19 
ITF Keyboard ....................................................... 2-3, 7-1 

k 
KBD binary ............................................................ 2-17 
KEY LABELS ON statement .............................................. 4-3 
Keyboard calculations .................................................... 2-4 
Keyboard commands ..................................................... 2-4 
Keyboard, HP 98203A .................................................... 9-1 
Keyboard, HP 98203B/C .................................................. 8-1 
Keyboard Input Line ..................................................... 2-5 
Keyboard, ITF ........................................................... 7-1 
Keyboard, live ........................................................... 4-9 
Keyboard overlays, BASIC ................................................ 7-2 
Keyboard Uses: 

Control program execution .............................................. 2-4 
Load and run programs ................................................. 2-4 
Perform calculations .................................................... 2-4 
Type in and execute commands ...................................... 2-4, 2-5 
Type in, edit, and store programs ........................................ 2-4 

Index 7 



Keyboard: 
HP 98203A ............................................................ 2-3 
HP 98203C ............................................................ 2-3 
ITF .................................................................. 2-3 

Keyboards, available ...................................................... 2-3 
Keys Used for Scrolling the Program ........................................ 6-9 
Keyword ................................................................ 6-1 
Keywords, letter-case in ................................................... 2-2 

I 
Labels, softkey ........................................................... 2-7 
Labels, volume .......................................................... 3-16 
Letter-case significance .................................................... 2-2 
Letters: 

Lower-case ............................................................ 6-6 
Upper-case ............................................................ 6-6 

LIF catalog contents: 
Address .............................................................. 5-14 
File name ............................................................ 5-14 
File type ............................................................. 5-14 
Mass storage volume specifier ........................................... 5-14 
Number of records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-14 
Protect code .......................................................... 5-14 
Record size ........................................................... 5-14 
Volume name ......................................................... 5-14 

LIF data area gap ....................................................... 5-35 
LIF directory format ..................................................... 3-13 
LIF directory gap ....................................................... 5-35 
LIF directory structure .................................................. 5-13 
LIF file ................................................................. 5-3 
LIF Files, Copying ...................................................... 5-33 
LIF protect codes ....................................................... 5-22 
LIF volume labels ....................................................... 5-39 
LINPUT statement ...................................................... 4-14 
LIST BIN statement ..................................................... 2-16 
LIST KEY statement .................................................... 2-21 
LIST statement ................................................ 2-13, 6-6, 6-16 
Listing a program ....................................................... 6-13 
Listing a Program, A Closer Look at ....................................... 6-16 
Live keyboard ........................................................... 4-9 
LOAD KEY command ................................................... 2-22 

8 Index 



LOAD KEY statement .............................................. 2-21,2-22 
LOAD statement ..................................................... 4-1, 4-4 
Loading programs .................................................... 4-1, 4-4 
Loading typing-aid softkeys ............................................... 2-22 
LOCK statement ........................................................ 5-31 
Locking and Unlocking SRM Files .................................... 5-31, 5-32 
Locks, SRM Passwords and ............................................... 5-27 
Lower-case letters ........................................................ 6-6 
Lower-case letters in keywords ............................................. 2-2 

m 
Mass storage concepts .................................................... 3-1 
MASS STORAGE IS (MSI) statement ..................................... 5-11 
MASS STORAGE IS statement ........................................... 5-21 
Mass storage organization ................................................. 3-1 
Mass storage volume format (recommendations) ............................. 3-13 
Mass storage volume formats, checking ...................................... 3-9 
Mass storage volume formats, choosing ..................................... 3-13 
Mass storage volume specifiers (examples) ................................... 3-7 
Mass storage volumes ..................................................... 3-3 
Memory, determining available ............................................. 2-5 
Menu Indicator, Softkey (ITF Keyboard Only) ............................... 2-8 
I Menu I key .......................................................... 2-13, 4-3 
MOVELINES command ............................................. 6-18, 6-25 
Moving Lines into a Subprogram .......................................... 6-26 
Moving Program Segments ............................................... 6-25 
msus (use "msvs") ........................................................ 3-5 
msvs ................................................................ 3-5, 3-7 

n 
NO HEADER statement ................................................. 5-18 
Numeric keypad ...................................................... 7-6, 8-4 

o 
ON KEY statement 2-7 
Open files and hierarchical directories ...................................... 5-21 
Order of devices searched by boot ROM ..................................... 1-6 
Overhead, HFS volumes .................................................. 3-15 

Index 9 



p 
Passwords and Locks, SRM ............................................... 5-27 
Passwords, specifying SRM ............................................... 5-31 
path ................................................................... 3-12 
I PAUSE I key ............................................................. 2-12 
PAUSE statement ....................................................... 2-12 
Pausing and Stopping Programs ........................................... 2-12 
PDEV binary ........................................................... 6-15 
Performing keyboard calculations ........................................... 2-4 
Permission bits ......................................................... 5-25 
PERMIT parameters .................................................... 5-26 
PERMIT statement ................................................ 5-24, 5-25 
power switch ............................................................ 1-2 
power up computer ....................................................... 1-2 
Power-on state .......................................................... 2-10 
Prerun .................................................................. 4-7 
Preventing program listings ............................................... 6-31 
PRINT LABEL statement ................................................ 5-40 
PRINTALL IS CRT statement ............................................ 2-15 
Printall printer ...... __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-15 
PRINTER IS CRT statement ............................................. 2-15 
Printer, system ......................................................... 2-15 
Problems with loading ................................................ 1-3, 1-5 
PROG file ......................................................... 5-19, 5-22 
PROG Files, Cataloging Individual ........................................ 5-19 
Program control keys ................................................ 7-9, 8-12 
Program currently in memory ............................................. 2-13 
Program Execution ....................................................... 4-8 
Program Execution, Example of Controlling ................................. 4-9 
Program line ............................................................ 6-2 
Program lines, entering ................................................... 6-4 
Program Lines, Statements as Commands vs. . ............................... 6-2 
Program-status indicators ................................................ 2-10 
Programs, loading .................................................... 4-1, 4-4 
Programs, running ................................................... 4-1, 4-7 
Protect code length ...................................................... 5-22 
Protect code, removing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-23 
Protect codes, LIF ...................................................... 5-22 
PROTECT statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-11, 5-22, 5-28 
Protecting files .......................................................... 5-21 
I PSE I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-12 

10 Index 



PURGE on LIF Directories, Effects of ..................................... 5-35 
PURGE statement ....................................... 5-11, 5-35, 5-37, 5-38 
Purging Files ........................................................... 5-35 
Purging HFS directories .................................................. 5-37 
Purging HFS files ....................................................... 5-37 
Purging SRM Files and Directories ........................................ 5-38 

r 
RE-SAVE statement ..................................................... 6-35 
RE-STORE KEY command .............................................. 2-21 
READ LABEL statement ................................................ 5-39 
Readable Programs ...................................................... 6-27 
Reading an ID Module's Contents ......................................... 6-32 
Reading an ID PROM. ................................................... 6-32 
I RECALL I key ....................................................... 2-13, 6-11 
Recalling Lines, Deleting and ............................................. 6-11 
REM statement .................................................... 6-27,6-30 
REN command .................................................... 6-18,6-19 
RENAME statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-11, 5-22, 5-34 
Renaming Files_-,u' • , , .. , .. , , , ~,~.~~~~ ....................... : .......... " 5-34 
Renumbering a program ................................................. 6-19 
I RESET I key ............................................................. 2-13 
Root directory ....................................................... 5-4, 5-7 
RUN command .......................................................... 4-7 
I RUN I key ................................................................ 4-7 
Run light ............................................................... 2-11 
Running a program ....................................... " 2-10,4-1,4-7,6-13 
Running Programs, Loading and ........................................... 4-1 

s 
SAVE statement ............................................... 4-4, 6-33, 6-34 
SCRATCH A command ............................................. 2-23,5-21 
SCRATCH A statement ................................................... 2-8 
SCRATCH BIN command ................................................ 2-23 
SCRATCH C command .................................................. 2-23 
SCRATCH command ............................................... 2-14, 2-23 
SCRATCH KEY command ............................................... 2-23 
SCRATCH R command .................................................. 2-23 
Scrolling the Program, Keys Used for ....................................... 6-9 
SDF directory structure .................................................. 5-13 
Search-and-Replace Operations ........................................... 6-24 

Index 11 



Sector scan (INITIALIZE) ................................................ 3-17 
Sector size, disc ......................................................... 3-18 
Sectors, disc ............................................................ 3-18 
SECURE statement ..................................................... 6-31 
Security, Software ................................................... 4-3, 6-31 
SELECT statement ...................................................... 5-18 
Selector, device (in volume specifier) ........................................ 3-5 
SET KEY statement ..................................................... 2-22 
SET TIMEDATE statement ............................................... 2-5 
I SET TAB I key ............................................................ 6-8 
Size of disc sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-18 
Size of flexible disc volumes ............................................... 3-18 
Softkey Labels ...................................................... 2-7,2-19 
Softkey Menu Changes (ITF Keyboards Only), Typing-Aid ................... 6-15 
Softkey-edit mode, exit the ............................................... 2-18 
Softkey-Menu Indicator (ITF Keyboard Only) ............................... 2-8 
Softkeys .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-12, 8-11, 9-10 
Softkeys, Typing-Aid ..................................................... 2-6 
Software Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3, 6-31 
space bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
Spared sectors (INITIALIZE) ............................................. 3-17 
SRM access capability: 

MANAGER .......................................................... 5-27 
READ ............................................................... 5-27 
WRITE .............................................................. 5-27 

SRM and HFS Directories and Files, Space Allocation for .................... 5-12 
SRM and HFS Files, Non-Contiguous Storage of ............................ 5-12 
SRM catalog contents: 

File name ............................................................ 5-17 
SRM directories, storing ................................................. 5-12 
SRM directory format ................................................... 3-10 
SRM file ................................................................ 5-3 
SRM Files and Directories, Purging ....................................... 5-38 
SRM Files, Copying ..................................................... 5-34 
SRM Files, Locking ...................................................... 5-31 
SRM Files, Locking and Unlocking ........................................ 5-32 
SRM files, storing ....................................................... 5-12 
SRM hierarchical-directory volume ......................................... 5-7 
SRM Passwords and Locks ............................................... 5-27 
SRM passwords, specifying ............................................... 5-31 
SRM Volumes .......................................................... 5-34 

12 Index 



Statement ............................................................... 6-1 
Statements as Commands vs. Program Lines ................................ 6-2 
~key ............................................................... 2-12 
STOP statement ........................................................ 2-12 
Stopping Programs, Pausing and .......................................... 2-12 
Storage media ........................................................... 3-1 
STORE KEY command .................................................. 2-21 
STORE KEY statement .................................................. 2-21 
STORE statement .............................................. 4-4, 6-33, 6-34 
Storing a program .............................................. 6-1, 6-13, 6-33 
Storing the Line .......................................................... 6-4 
String Array, Cataloging to a ............................................. 5-19 
SUB statement ........................................................... 4-7 
SUBEND statement ...................................................... 4-7 
Subordinate directory ..................................................... 5-8 
Syntax ......................... , .... " .......... " .................. , ... 6-5 
System Clock, Checking and Setting the .................................... 2-5 
System control keys ............................................. 7-10, 8-9, 9-8 
System devices, determining current ....................................... 2-15 
System Disc Utility ...................................................... 3-16 
System dump device ..................................................... 2-15 
I System I key .............................................................. 2-8 
System Messages ......................................................... 2-5 
System printer .......................................................... 2-15 
System state ............................................................ 2-10 
SYSTEM$("AVAILABLE MEMORY") function ........................ 2-5,2-15 
SYSTEM$("DUMP DEVICE IS") function ................................. 2-15 
SYSTEM$("MSI") function .............................................. 2-15 
SYSTEM$("PRINTALL IS") function ..................................... 2-15 
SYSTEM$("PRINTER IS") function ...................................... 2-15 
SYSTEM$( "SERIAL NUMBER") function ................................. 6-32 
SYSTEM$( "VERSION\: 

BASIC") function ..................................................... 2-16 
ERR ") function ....................................................... 2-16 

Index 13 



t 
Time, Checking and Setting the System ..................................... 2-5 
Time stamps, compatibility with HP-UX .................................... 2-5 
Time stamps, files ....................................................... 3-16 
TIME ZONE IS statement ................................................. 2-5 
TRANSFER ............................................................ 3-14 
TRANSFER statement .................................................. 4-14 
Thrn on computer ........................................................ 1-2 
Typing Mistakes, Correcting ............................................... 6-4 
Typing-Aid Softkeys ...................................................... 2-6 
Typing-Aid Softkeys: 

Defining Programmatically ............................................. 2-22 
Examples of Re-Defining ............................................... 2-17 
Files ................................................................. 2-21 
Listing the Current Definitions .......................................... 2-21 
Loading Definitions .................................................... 2-22 
Memory Available for Definitions ........................................ 2-20 
Menu Changes (ITF Keyboards Only) ................................... 6-15 
Re-Defining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-17 
Restoring Power-Up Definitions ......................................... 2-22 
Storing Definitions .................................................... 2-21 
Example Definition ..................................................... 2-7 

u 
Undocumented Programs, Contrast Between Documented and ................ 6-28 
Unit number (in volume specifier) .......................................... 3-5 
UNLOCK statement ..................................................... 5-31 
Unlocking SRM Files, Locking and ........................................ 5-32 
Upper-case letters ........................................................ 6-6 
Upper-case letters in keywords ............................................. 2-2 
User 1 softkey menu ...................................................... 2-8 
User 2 softkey menu ...................................................... 2-9 
User 3 soft key menu ...................................................... 2-9 
I User I key ................................................................ 2-8 

14 Index 



v 
vi-compatible files, creating ............................................... 6-35 
Volume ................................................................. 5-3 
Volume, default .......................................................... 5-1 
Volume format (recommendations) ........................................ 3-13 
Volume formats, checking ................................................. 3-9 
Volume formats, choosing ................................................ 3-i3 
Volume labels ........................................................... 3-16 
Volume labels: 

HFS ................................................................. 5-39 
LIF .................................................................. 5-39 
reading .............................................................. 5-39 
writing ............................................................... 5-40 

Volume number (in volume specifier) ....................................... 3-5 
Volume size ............................................................ 3-16 
Volume specifiers ..................................................... 3-5, 5-3 
Volume specifiers (examples) ............................................... 3-7 
Volumes ................................................................ 3-3 
Volumes, Copying Files and .............................................. 5-32 

Index 15 



16 Index 



fold-

MANUAL COMMENT CARD 

Using the BASIC 5.0/5.1 System 

HP Part Number 98613-90000 11/87 

Please help us improve this manual. Circle the numbers in the following 
statement that best indicate how useful you found this manual. Then add 
any further comments in the spaces below. In appreciation of your time, we 
will enter your name in a quarterly drawing for an HP calculator. Thank 
you. 

The information in this manual: 

Is poorly organized 1 2 3 4 5 Is well organized 

Is hard to find 1 2 3 4 5 Is easy to find 

Doesn't cover enough 1 2 3 4 5 Covers everything 

Has too many errors 1 2 3 4 5 Is very accurate 

Particular pages with errors? 

Comments: _______________________ _ 

Name: ___________________________________ _ 

Job Title: ____________________________ _ 

Company: __________________________________ ___ 

Address: __________________________________ __ 

o Check here if you wish a reply. 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 

POSTAGE WIU BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

LOVELAND,COLORADO 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



HP Part Number 
98613-90000 
Microfiche No. 98613-99000 
Printed in U.S.A. 11/87 

Fliii- HEWLETT 
a:~ PACKARD 

II ~H 111111 i 
98b]'3-9Db3D 
For Internal Use Only 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	replyA
	replyB
	xBack

